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Introduction
Success probability: binomial test

One- or two-sample difference tests
Alternatives to correlation coefficients

1. Intro to non-parametric tests
2. Success probability: binomial test
3. Tests of differences between groups – paired from one-sample

and independent from two-sample
I Fisher sign test and Wilcoxon rank sign test
I Comparing success probabilities: Fisher’s exact test
I Median test and Wilcoxon/Mann-Whitney rank sum test
I Kolmogorov-Smirnov equal distribution test
I Kruskal-Wallis test

4. Alternatives to correlation coefficients – bivariate relationships
I Spearman’s ρ
I Kendall’s τ
I Goodman and Kruskal’s gamma and Somers’ D
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Introduction
Success probability: binomial test

One- or two-sample difference tests
Alternatives to correlation coefficients

What are non-parametric tests

Tests that
I make fewer assumptions about the population –

distribution-free tests or infinite-dimensional statistical
models

I are more robust to outliers and heterogeneity of variance
I are robust even if you cannot reasonably characterize the

distribution of the underlying population
I are applicable for interval and ordinal data – some for nominal

data
I have test statistics that are distributed normally when N is

large
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When are non-parametric tests advantageous

I when assumptions of parametric tests/estimators are not met
Example: t-test statistic does not have a t-distribution if
underlying population not normal or sample size to small

I
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Alternatives to correlation coefficients

Disadvantages of non-parametric tests

I No estimates of variance
I Mostly no confidence intervals
I Need more observations to draw a conclusion with same

certainty i.e., less powerfull as parametric alternative when
assumptions for parametric tests are met – differences are
small, though and parametric alternatives perform vastly
worse when assumptions are not met
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Binomial test: Basics
I Observing outcomes of n independent repeated Bernoulli

trials, what is the probability of success p?
I Assumptions:

1. Dichotomous data: outcomes can be classified as either
success or failure

2. p remains constant for each trial
3. n trials are independent

I H0 : p = 0
I Other tests/statistics below relate to the basic binomial test

of significance
I Under assumptions 1-3, it is a distribution-free test of H0

because the probability distribution of B is determined
without further assumptions on the distribution of the
underlying population
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Binomial test: Procedure

I To H0 : p = 0 set the desired level of significance α and set B
to number of observed successes

I Reject H0 if B ≥ bαlower and B ≤ cα
I where bα is the upper α1 percentile point and bα2 is the lower

percentile point with α = α1 + α2
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Binomial test: Example

I Say n = 8 and we test H0 : p = .4 vs p > .4
I From the table of the binomial distribution for n = 8 and

p = .4 we get
b 0 1 2 3 4 5 6 7 8
Prob.4(B ≥ b) 1 .9832 .8936 .6846 . 4059 .1737 .0498 .0085 .0007

I Suppose we want α < .05, bαs that satisfy
Prob.4(B ≥ bα) = α are 6, 7, 8 – for the upper-tail test,
reject H0 : p = .4 if 6 or more successes are observed
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Dependent samples
Independent samples

One- or two-sample difference tests

I investigate treatment effects on . . .
I observations from one sample (paired or dependent data)
I observations from two samples (independent data)

I Wilcoxon sign rank and Wilcoxon/Mann-Whitney rank sum
tests in detail, lots of other tests
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Dependent samples
Independent samples

Sign test: Basics

I Alternative to paired t-test which assumes normality and
equal variance across groups in underlying data

I Information taken from signs in difference between paired
observations

I Assumptions:
I paired observations (X 1

1 ,X 2
1 ), . . . , (X 1

N ,X 2
N) are random sample

and iid
I paired observations are dependent
I paired differences come from same continuous distribution
I Use when direction of difference between two measurements

on same unit can be determined
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Dependent samples
Independent samples

Sign test: Procedure
I Compute difference Di = X 1

i − X 2
i between N pairs of

matched observations
I Say, θ is median of distribution of Di
I H0 : θ = 0 vs HA : θ > 0 or distribution of differences has

median 0
I Test statistic D+ is number of positive differences
I What is distribution of D+? Think of θi = 1ifD+ > 0 and 0

otherwise as Bernoulli random variable → Distribution is
binomial

I Under H0 number of positive and negative differences should
be equal or H0 : D+ ∼ binomial(N, 1/2)

I Say number of positive Di is n+, then B/2N where B =
(N

n+
)

gives the probability of getting exactly as many positive Di
I To get obtain a p-Value, sum all binomial coefficients that are

small than B and divided by 2N
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Dependent samples
Independent samples

Sign test: Example
I Consider the income-variable in gssData.dta
I Question: Did income increase from ’08 to ’12?
I Note, it is an ordinal measured variable, taking a difference

may not make sense – assume for this example that it makes
sense

+---------------------------+
| income08 income12 D_i |
|---------------------------|

1. | 3 19 -16 |
2. | 4 9 -5 |
3. | 17 20 -3 |
4. | 15 17 -2 |
5. | 14 16 -2 |

|---------------------------|
6. | 20 21 -1 |
7. | 20 21 -1 |
8. | 22 22 0 |
9. | 16 13 3 |

10. | 21 17 4 |
|---------------------------|

11. | 19 15 4 |
12. | 25 19 6 |
13. | 14 6 8 |
14. | 21 12 9 |
15. | 11 1 10 |

+---------------------------+
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Dependent samples
Independent samples

Sign test: Example

I Consider the income-variable in gssData.dta
I Note, it is an ordinal measured variable, taking a difference

may not make sense – assume for this example that it makes
sense looking at the categories not the income label

I Differences: -10 -9 -8 -6 -4 -4 -3 0 1 1 2 2 3 5 16
I How likely is it to observe 7 positive Di when H0 if p = .5 is

true
I Binomial with N = 15, p = .5, and x = 7:Prob(X ≤ 7) = 0.50
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Sign test: Example
Sign test

sign | observed expected
-------------+------------------------

positive | 7 7
negative | 7 7

zero | 1 1
-------------+------------------------

all | 15 15

One-sided tests:
Ho: median of income08 - income12 = 0 vs.
Ha: median of income08 - income12 > 0

Pr(#positive >= 7) =
Binomial(n = 14, x >= 7, p = 0.5) = 0.6047

Ho: median of income08 - income12 = 0 vs.
Ha: median of income08 - income12 < 0

Pr(#negative >= 7) =
Binomial(n = 14, x >= 7, p = 0.5) = 0.6047

Two-sided test:
Ho: median of income08 - income12 = 0 vs.
Ha: median of income08 - income12 != 0

Pr(#positive >= 7 or #negative >= 7) =
min(1, 2*Binomial(n = 14, x >= 7, p = 0.5)) = 1.0000
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Dependent samples
Independent samples

Sign test: Small sample issues

I Only needs sign of difference, not difference itself
I Less efficient than Wilcoxon sign-rank test (uses only sign not

ordering) but rather robust to outliers
I How to deal with Di = 0: Usually ignored but reduces

effective sample size
I works for interval data but pay attention to ties - which

correction for tied values?
I Generally, within-subject design may require fewer subjects
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Dependent samples
Independent samples

Wilcoxon sign-rank test: Basics

I Alternative to paired t-test which assumes normality and
equal variance across groups in underlying data

I Information taken from signs in difference between paired
observations (pre- vs post-treatment)

I When actual difference pre- vs post-treatment is greater than
0, tendency to larger proportion of positive differences
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Dependent samples
Independent samples

Wilcoxon sign-rank test: Basics

I Assumptions:
I paired observations (X 1

1 ,X 2
1 ), . . . , (X 1

N ,X 2
N) are random sample

and iid i.e., differences are mutually independent (while paired
observations are dependent)

I paired differences come from a continuous distribution
I Test of null hypothesis of zero shift in location (no treatment

effect), H0 : θ = 0 – null hypothesis states that each of the
distributions for the differences is symmetrically distributed
about 0

I Use when direction of difference and magnitude between two
measurements on same unit can be determined

21 / 82



Introduction
Success probability: binomial test

One- or two-sample difference tests
Alternatives to correlation coefficients

Dependent samples
Independent samples

Wilcoxon sign-rank test: Procedure

I Compute difference Di = X 1
i − X 2

i between N pairs of
matched observations

I Order absolute values of differences from smallest to largest
I Let S2

1 denote the rank of D1, . . . ,SN denote the rank of DN
in the joint ordering

I Assign average rank to ties
I Wilcoxon signed rank statistic, W +, is sum of positive signed

ranks
I Under H0 : θ = 0, W + is distributed according to the

distribution derived by Wilcoxon (1954)
I Reject H0 if W + ≥ wα/2 or W + ≤ n(n+2)

2 − wα/2
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Dependent samples
Independent samples

Wilcoxon sign-rank test: Distribution of W

I Based on permutations of all possible rankings
I Btw, related to Mann-Whitney U
I Where is the distribution coming from?
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Dependent samples
Independent samples

Wilcoxon sign-rank test: Example

+-------------------------------------------+
| income08 income12 D_i absD_i rank |
|-------------------------------------------|

1. | 22 22 0 0 1 |
2. | 20 21 -1 1 2.5 |
3. | 20 21 -1 1 2.5 |
4. | 14 16 -2 2 4.5 |
5. | 15 17 -2 2 4.5 |

|-------------------------------------------|
6. | 16 13 3 3 6.5 |
7. | 17 20 -3 3 6.5 |
8. | 21 17 4 4 8.5 |
9. | 19 15 4 4 8.5 |

10. | 4 9 -5 5 10 |
|-------------------------------------------|

11. | 25 19 6 6 11 |
12. | 14 6 8 8 12 |
13. | 21 12 9 9 13 |
14. | 11 1 10 10 14 |
15. | 3 19 -16 16 15 |

+-------------------------------------------+
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Wilcoxon sign-rank test: Distribution of W +

I Sum of ranks of positive differences: 74.5
I (Sum of ranks of negative difference: 45.5)
I Lowest possible rank? 0 – no difference is positive
I Highest possible rank? N(N + 1)/2 = 15(16)/2 = 120 – all

differences are positive
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Wilcoxon sign-rank test: Distribution of W +
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I What is the smallest significance level at which these data
lead to rejection of H0?

I For our example, we have N = 14 and W + = 74.5
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Wilcoxon sign-rank test: Critical values of W + for N = 14

Source: Hollander/Wolfe, p.576
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Wilcoxon sign-rank test: Example

I Reject H0 if W + ≥ wα/2 or W + ≤ n(n+2)
2 − wα/2

I For α = .052, reject if W + ≥ 80 or
W + ≤ 15(16)

2 − 80 = 120− 80 = 40 – so we do not reject
I What is the large sample approximation:

I Standardize W +: Under the null, E (W +) = n(n+1)
4 and

var(W +) = n(n+1)(2n+1)
24

I W ∗ = W +−E(W +)√
var(W +)

I With n→∞, W + ∼ N(0, 1)
I Adjustments for ties are needed
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Wilcoxon sign-rank test: Example

Wilcoxon signed-rank test

sign | obs sum ranks expected
-------------+---------------------------------

positive | 7 73.5 59.5
negative | 7 45.5 59.5

zero | 1 1 1
-------------+---------------------------------

all | 15 120 120

unadjusted variance 310.00
adjustment for ties -0.50
adjustment for zeros -0.25

----------
adjusted variance 309.25

Ho: income08 = income12
z = 0.796

Prob > |z| = 0.4260
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signrankex income08 = income12

Wilcoxon signed-rank test

sign | obs sum ranks expected
-------------+---------------------------------

positive | 7 66.5 52.5
negative | 7 38.5 52.5

zero | 1
-------------+---------------------------------

all | 15 120 120

Ho: income08 = income12
S = 14.000

Prob >= |S| = 0.3976
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Wilcoxon sign-rank test: Small sample issues

I Wilcoxon sign-rank test incorporates more information than
sign-test but also needs more information

I How to deal with Di = 0: Usually ignored but reduces
effective sample size

I works for interval data but pay attention to ties - which
correction for tied values?

I Generally, within-subject design may require fewer subjects
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CI for Wilcoxon sign rank test: Basics

I Related to Wilcoxon sign-rank statistic and Hodges-Lehman
location estimator

I Hodges-Lehman estimator for real treatment effect θ is
θ̂ = median{Di +Dj

2 , i ≤ j = 1, . . . , n}
I Then, O1 ≤ . . .OM are the ordered values of the average

differences with M = n(n+1)
2
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CI for Wilcoxon sign rank test: Procedure

I Obtain upper (α/2)th percentile point wα/2 of the null
distribution of W +

I Cα = n(n+1)
2 + 1− wα/2

I CI for two-sided test of H0 : θ = 0 (zero location shift):
I θlb = OCα

I θub = OM+1−C
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Fishers exact test: Basics

I Say we observe the outcomes O11 (O21) of n1 (n2)
independent repeated Bernoulli trials with real success
probability p1 (p2) in a sample from population 1 (2)

Successes Failures Totals
Sample 1 O11 O12 n1·
Sample 2 O11 O12 n2·
Totals n·1 n·2 n
I Assumption

I trials from sample 1 are independent of those from sample 2
I H0 : p1 = p2 = p
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Fishers exact test: Procedure

I Prob(O11 = x |n1·, n2·, n1·1, n·2) = n·1!n·2!n1·!n1·!
n!x !O12!O21!O22!

I Fisher’s exact test rejects H0 : p1 = p2 if O11 ≥ qα
where qα is chosen from the conditional distribution described
above so that Prob(O11 = x |n1·, n2·, n1·1, n·2) = α where α is
our desired level of significance
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Fishers exact test: Example

| varBi
cat | 0 1 | Total

-----------+----------------------+----------
0 | 5 4 | 9
1 | 4 2 | 6

-----------+----------------------+----------
Total | 9 6 | 15

I H0 : p1 > p2
I What are the probabilities of the tables that would give us a

value as larger as or larger than the observed value of
O11 = 5?
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Fishers exact test: Example

3 6 4 5 5 4 6 3 7 2 8 1 9 0
6 0 5 1 4 2 3 3 2 4 1 5 0 6
.017 .151 .378 .336 .108 .011 .000
I H0 : p1 < p2
I What are the probabilities of the tables that would give us a

value as small as or small than the observed value of O11 = 5?
– it is .017 + .151 + .378 = .546
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Fishers exact test: Small sample issues

I Appropriate when expected frequency in any of the cells is
below 5 – otherwise χ2-test

I Also small sample test of independence
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Fishers exact test: Example

. tab cat varBi, exact;

| varBi
cat | 0 1 | Total

-----------+----------------------+----------
0 | 5 4 | 9
1 | 4 2 | 6

-----------+----------------------+----------
Total | 9 6 | 15

Fisher’s exact = 1.000
1-sided Fisher’s exact = 0.545
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Median test: Basics

I Assumptions:
I observations X 1

1 , . . . ,X 1
n (X 1

2 , . . . ,X 2
m) from population 1 (2)

are random samples and iid
I independence between the two samples

I Hypothesis: medians of the two populations are the same
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Median test: Procedure

I Take grand median of combined sample of N = n + m
observations

I Classify each observation as below or above the grand median,
drop those equal to the median

I Fill 2x2 contingency table
I Perform Fisher’s exact test
I Easily extendable to k samples

42 / 82



Introduction
Success probability: binomial test

One- or two-sample difference tests
Alternatives to correlation coefficients

Dependent samples
Independent samples

Median test: Example

cat == 0 cat == 1
Below grand median 5 2 7
Above grand median 3 4 7

8 6 14
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Median test: Example

. median var, by(cat) exact medianties (drop)

Median test

Greater |
than the | cat

median | 0 1 | Total
-----------+----------------------+----------

no | 5 2 | 7
yes | 3 4 | 7

-----------+----------------------+----------
Total | 8 6 | 14

Pearson chi2(1) = 1.1667 Pr = 0.280
Fisher’s exact = 0.592

1-sided Fisher’s exact = 0.296

Continuity corrected:
Pearson chi2(1) = 0.2917 Pr = 0.589
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Median test: Small sample issues

I Valid only for interval and ordinal data
I With skewed distributions, median is a robust statistic!
I Measures how many observations are below/above median in

group and not by how much do observations differ – less
powerful test than parametric alternative
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Alternative parametric t-test
Dangerous beast if hunting for low p-values in this case
. ttest var, by(cat)

Two-sample t test with equal variances
------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--------------------------------------------------------------------

0 | 9 6.777778 1.769948 5.309844 2.69627 10.85929
1 | 6 10.5 1.979057 4.84768 5.412672 15.58733

---------+--------------------------------------------------------------------
combined | 15 8.266667 1.367886 5.297798 5.332844 11.20049
---------+--------------------------------------------------------------------

diff | -3.722222 2.707443 -9.571297 2.126853
------------------------------------------------------------------------------

diff = mean(0) - mean(1) t = -1.3748
Ho: diff = 0 degrees of freedom = 13

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0962 Pr(|T| > |t|) = 0.1924 Pr(T > t) = 0.9038

I Disregard? – skewed distribution, unknown variance
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Mann-Whitney/Wilcoxon: Basics

I Basic hypothesis, no treatment effect or sample from one
population

I If treatment effect positive, values from one sample tend to be
larger than values from other sample → ranks of values in one
sample larger than in the other

I Mann Whitney U / Wilcoxon W statistic provide base for
similar test
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Mann-Whitney/Wilcoxon: Basics

I Assumptions:
I observations X 1

1 , . . . ,X 1
n (X 1

2 , . . . ,X 2
m) from population 1 (2)

are random samples and iid
I independence between the two samples
I continous outcome variable

I Hypothesis: H0 : F (x) = G(x)∀ x where F (G) is the
distribution function corresponding to population 1 (2) –
comparison of distributions!

I Alternatively: H0 : E (X 1)− E (X 2) = 0 – test of shift in
location only when underlying distribution of similar shape –
check out Fligner-Policello
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Mann-Whitney/Wilcoxon: Procedure
I Order combined sample of N = n + m observations from

smallest to largest
I Let S2

1 denote the rank of X 2
1 , . . . ,Sm denote the rank of X 2

m
in the joint ordering

I Assign ties average rank
I Sum of ranks assigned to X 2-values is W =

∑
j = 1NSj

I Two-sided test: Reject H0 if W ≥ wα/2
I Get distribution of W from table – generated from all

combinations of rank-orderings
I Mann Whitney U:

I For each pair of X 1
i and X 2

j observe which is smaller and score
one for that pair if Xi is smaller

I Sum of scores is U
I Without ties, W = U + n(n + 1)/2
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Mann-Whitney/Wilcoxon: Example
I Consider the variable var in the fakeData.dta
I We ask, is there a difference in distribution of var across the

groups defined by cat – between-subject treatment effect
. ranksum var, by(cat)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

cat | obs rank sum expected
-------------+---------------------------------

0 | 9 59.5 72
1 | 6 60.5 48

-------------+---------------------------------
combined | 15 120 120

unadjusted variance 72.00
adjustment for ties -0.51

----------
adjusted variance 71.49

Ho: var(cat==0) = var(cat==1)
z = -1.478

Prob > |z| = 0.1393
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Mann-Whitney/Wilcoxon: Example

I Is normal approximation appropriate let’s look at exact
probabilities

. ranksumex var, by(cat)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

cat | obs rank sum expected
-------------+---------------------------------

0 | 9 59.5 72
1 | 6 60.5 48

-------------+---------------------------------
combined | 15 120 120

Exact statistics
Ho: var(cat==0) = var(cat==1)

Prob <= 35.5 = 0.0769
Prob >= 60.5 = 0.0771
Two-sided p-value = 0.1540

I Note: exact distribution too conservative with many ties.
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Mann-Whitney/Wilcoxon: Example

I And we do have many ties
+------------------+
| rank var cat |
|------------------|

1. | 1 1 0 |
2. | 2.5 2 0 |
3. | 2.5 2 0 |
4. | 4.5 3 1 |
5. | 4.5 3 0 |

|------------------|
6. | 6 5 0 |
7. | 7 6 1 |
8. | 8 9 0 |
9. | 9 11 0 |

10. | 10 12 1 |
|------------------|

11. | 11.5 13 1 |
12. | 11.5 13 0 |
13. | 13 14 1 |
14. | 14.5 15 1 |
15. | 14.5 15 0 |

+------------------+
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Mann-Whitney/Wilcoxon: Small sample issues

I Valid for any distribution of the sample – exact test only valid
if few or no ties between the groups!

I Much less sensitive to outliers than two-sample t-test
I Wilcoxon only little less likely to detect location shift than

t-test
I For joint sample sizes larger than 20, use normal

approximation
I rank sum test only a test of equality in medians/means if

distributions are of same shape but differ in location
I works for interval or ordinal data but pay attention to ties
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Alternative parametric t-test
I Again, it’s a dangerous beast if hunting for low p-values in

this case
. ttest var, by(cat)

Two-sample t test with equal variances
------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--------------------------------------------------------------------

0 | 9 6.777778 1.769948 5.309844 2.69627 10.85929
1 | 6 10.5 1.979057 4.84768 5.412672 15.58733

---------+--------------------------------------------------------------------
combined | 15 8.266667 1.367886 5.297798 5.332844 11.20049
---------+--------------------------------------------------------------------

diff | -3.722222 2.707443 -9.571297 2.126853
------------------------------------------------------------------------------

diff = mean(0) - mean(1) t = -1.3748
Ho: diff = 0 degrees of freedom = 13

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0962 Pr(|T| > |t|) = 0.1924 Pr(T > t) = 0.9038

I Disregard? – skewed distribution, unknown variance
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Kolmogorov-Smirnov: Basics

I Test of equality of distributions, not a directional test
I Assumptions:

I observations X 1
1 , . . . ,X 1

n (X 1
2 , . . . ,X 2

m) from population 1 (2)
are random samples and iid

I independence between the two samples
I continous outcome variables

I Test of H0 : F (x) = G(x) ∀ x vs
HA : F (x) 6= G(x) for at least one x

I Transfers values of observations into a step function, makes it
a distribution-free test
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Kolmogorov-Smirnov: Procedure

I For the two samples X1 and X2 order the combined
N = n + m values denoted Z1, . . . ,ZN

I obtain the empirical distribution functions
I For every i = 1, . . . ,N, let

F (Zi ) = # of sample X1s ≤Zi
m

G(Zi ) = # of sample X1s ≤Zi
n

I This is the fraction of sample observations less than or equal
to the value behind Zi

I Then, J = mn
d maxi=1,...,N{F (Zi )− G(Zi} is the test statistic

where d is the greatest common divisor of m and n
I Reject H0 if J ≥ jα
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Kolmogorov-Smirnov: Example
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Kolmogorov-Smirnov: Example
+-------------------------------------------------------------+
| var F G D_FG maxD_FG M N J |
|-------------------------------------------------------------|

1. | 1 .1111111 0 .1111111 .4444444 9 6 8 |
2. | 2 .3333333 0 .3333333 .4444444 9 6 8 |
3. | 2 .3333333 0 .3333333 .4444444 9 6 8 |
4. | 3 .4444444 .1666667 .2777778 .4444444 9 6 8 |
5. | 3 .4444444 .1666667 .2777778 .4444444 9 6 8 |

|-------------------------------------------------------------|
6. | 5 .5555556 .1666667 .3888889 .4444444 9 6 8 |
7. | 6 .5555556 .3333333 .2222222 .4444444 9 6 8 |
8. | 9 .6666667 .3333333 .3333333 .4444444 9 6 8 |
9. | 11 .7777778 .3333333 .4444444 .4444444 9 6 8 |

10. | 12 .7777778 .5 .2777778 .4444444 9 6 8 |
|-------------------------------------------------------------|

11. | 13 .8888889 .6666667 .2222222 .4444444 9 6 8 |
12. | 13 .8888889 .6666667 .2222222 .4444444 9 6 8 |
13. | 14 .8888889 .8333333 .0555556 .4444444 9 6 8 |
14. | 15 1 1 0 .4444444 9 6 8 |
15. | 15 1 1 0 .4444444 9 6 8 |

+-------------------------------------------------------------+

I We cannot reject H0 at standard levels of significance
I Ties! For exact probabilities, each step should have been 1/15

= .067
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Kolmogorov-Smirnov: Example

Source: Hollander/Wolfe (1999), p.608
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Kolmogorov-Smirnov: Small sample issues

I Ties require adjustment to how exact p-values are computed.
Could derive the conditional null distribution by considering
the

( N
# of ties

)
possible ways how our observations could be

assigned – not implemented in R, Stata
I Exact values appropriate, Smirnovs (1933) approximations not

good for samples smaller than 50
I Do not do the one-sample test for normality with

Kolmogorov-Smirnov – even best (also non-parametric)
alternative, Shapiro-Wilk test, has not enough power to reject
normality
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Kruskal-Wallis: Basics

I Test of the location of k populations
I Parametric alternative is the one-way ANOVA – builds on a

measure of group differences but in ranks
I Extension of the Mann-Whitney U to more than two groups
I Population may be defined by confounding variables – moving

into multi-variate analysis
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Kruskal-Wallis: Basics
I Assumptions:

I observations X 1
1 , . . . ,X 1

n (X 1
2 , . . . ,X 2

m) from population 1 (2)
are random samples and iid

I independence between the two samples
I continous outcome variables
I distribution of outcome variable has similar shape across

groups
I Under these assumptions and H0 the vector of ranks has a

uniform distribution over the set of all N! permutations of the
vectors of integers (1, 2, . . . ,N)

I H0 : θ1 = . . . = θk– Kruskal-Wallis tests against Ha of at least
two treatment effects are not equal

I Applicable to ordinal and continuous scales
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Kruskal-Wallis: Procedure
I Combine N observations from k samples and rank all X
I Let rij be the rank of observation Xij then

Rj =
∑
i=1

nj and R·j = Rj
nj

for treatment j

I Then,

H = 12
N(N+1)

k∑
j=1

nj
(
R·j − N+1

2

)2

where nj is the number of observations in treatment j – add
appropriate correction of ties

I H is a constant × a weighted sum of squared differences
between the observed average rank and the expected value
under the null within a group

I Reject H0 if H ≥ hα
63 / 82



Introduction
Success probability: binomial test

One- or two-sample difference tests
Alternatives to correlation coefficients

Dependent samples
Independent samples

Kruskal-Wallis: Example

+-------------------+
| cat3 var rank |
|-------------------|

1. | 3 1 1 |
2. | 2 2 2.5 |
3. | 3 2 2.5 |
4. | 1 3 4.5 |
5. | 1 3 4.5 |

|-------------------|
6. | 1 5 6 |
7. | 2 6 7 |
8. | 2 9 8 |
9. | 2 11 9 |

10. | 2 12 10 |
|-------------------|

11. | 3 13 11.5 |
12. | 3 13 11.5 |
13. | 2 14 13 |
14. | 1 15 14.5 |
15. | 3 15 14.5 |

+-------------------+
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Kruskal-Wallis: Example

. kwallis var, by(cat3);

Kruskal-Wallis equality-of-populations rank test

+-----------------------+
| cat3 | Obs | Rank Sum |
|------+-----+----------|
| 1 | 4 | 29.50 |
| 2 | 6 | 49.50 |
| 3 | 5 | 41.00 |
+-----------------------+

chi-squared = 0.107 with 2 d.f.
probability = 0.9480

chi-squared with ties = 0.108 with 2 d.f.
probability = 0.9476

I H = 12
15(16) 4(29.5/4− 8)2 + 6(49.5/6− 8)2 + 5(41/5− 8)2 =

.106875
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Kruskal-Wallis: Example

. set seed 010101;

. permute var h = r(chi2), reps(10000) nowarn nodots: kwallis var, by(cat3);

Monte Carlo permutation results Number of obs = 15

command: kwallis var, by(cat3)
h: r(chi2)

permute var: var

------------------------------------------------------------------------------
T | T(obs) c n p=c/n SE(p) [95% Conf. Interval]
-------------+----------------------------------------------------------------

h | .1068756 9551 10000 0.9551 0.0021 .9508566 .9590757
------------------------------------------------------------------------------
Note: confidence interval is with respect to p=c/n.
Note: c = #{|T| >= |T(obs)|}
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Kruskal-Wallis: Small sample issues

I When n grows larger, it the distribution of H approaches a
χ2-distribution

I Adjustments for ties necessary
I Sample size need to allow able to derive permutation

distribution
I Not a test of location unless distributions of k groups similar
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Spearman’s ρ: Basics

I Pearsons correlation for variables converted to ranks
I Remember: ρX ,Y = cov(X ,Y )

σXσY
I Spearman’s ρ tells us something about the proportion of

variability accounted for but computed from ranks
I Assumptions:

I X and Y random sample and iid
I ordinal or interval data
I Monotonic relationship between the two variables

I H0 : The variables do not have a rank-order relationship
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Spearman’s ρ: Example
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Spearman’s ρ: Example

I Let’s look at pairwise Pearson’s correlations coefficients
. pwcorr var varX, sig

| var varNon˜n varOut˜r varInd
-------------+------------------------------------

var | 1.0000
|
|

varNonMon | -0.0657 1.0000
| 0.8161
|

varOutlier | 0.4443 -0.5894 1.0000
| 0.0971 0.0208
|

varInd | -0.1208 0.5183 -0.1290 1.0000
| 0.6680 0.0478 0.6467
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Spearman’s ρ: Example

. spearman var varX, stats(rho p)
| var varNon˜n varOut˜r varInd

-------------+------------------------------------
var | 1.0000

|
|

varNonMon | -0.0820 1.0000
| 0.7713
|

varOutlier | -0.2986 -0.5743 1.0000
| 0.2797 0.0251
|

varInd | -0.1380 0.5251 -0.0771 1.0000
| 0.6238 0.0445 0.7849
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Spearman’s ρ: Small sample issues

I Relationship needs to be only monotonic not linear (or
normal) as for Pearsons correlation coefficient

I Rather robust to outliers (thanks to ranks again)
I Are transformations an option to satisfy monotonicity? It is a

rank measure, what transformations would that be?
I With N > 30, Pearson’s r and Spearman’s ρ are sufficiently

equivalent – critical value with p = 0.05 for Pearson’s with 28
df is .361, for Spearman’s with N=30 is .363
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Spearman’s ρ: Small sample issues

I Report Spearman’s ρ with a proper summary statistic of the
data (e.g., median and IQR)

I Check for number of ties
I Don’t use correlation coefficients for data with limit range

(e.g. Likert scale)
I (Don’t forget adjustments to p-value if testing multiple

hypothesis)
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Kendall’s τ : Basics

I Define n as number of observations, any pair of ranks (xi , yi )
and (xj , yj) of one variable pair as concordant if
(xi − xj)(yi − yj) > 0 and discordant otherwise – where C(D)
is number of concordant (discordant pairs),

I τa = C−D
n(n−1)/2

I τb = C−D√
n(n−1)/2−U

√
n(n−1)/2−V

with U and V being the sum of the number of tied values in
all tied sets in variable X and Y , respectively

I It’s a probability: difference between the probability that two
variables are in the same order in the observed data versus the
probability that the two variables are in different orders
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Kendall’s τ : Example
. ktau var varX, stats(rho obs p)

+-----------------+
| Key |
|-----------------|
| tau_a |
| tau_b |
| Sig. level |
+-----------------+

| var varNon˜n varOut˜r varInd
-------------+--------------------------------------------

var | 0.9619
| 1.0000
|
|

varNonMon | -0.0571 0.8762
| -0.0622 1.0000
| 0.7996
|

varOutlier | -0.4667 -0.4000 0.9619
| -0.4851 -0.4357 1.0000
| 0.0165 0.0373
|

varInd | -0.0857 0.4000 -0.0667 1.0000
| -0.0874 0.4273 -0.0680 1.0000
| 0.6907 0.0382 0.7654
|
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Kendall’s τ : Small sample issues

I τ approaches a normal distribution more rapidly (N ≥ 10))
than Spearman’s ρ (Gilpin 1993), with continuos variables
even for (N ≥ 8), Kendall/Gibbons 1990)

I Said to be more accurate with smaller samples because less
sensitive to discrepancies in data

I Give vastly different exact p-values for various sample sizes
and data values: −1 <= 3 ∗ τ − 2ρ <= 1 (Siegel/Castellan
1988)
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More tests

I Goodman and Kruskal’s gamma:
I γ = C−D

C+D
I Distribution of G has high variability and is skewed for small to

moderate sample sizes, convergence to ideal distribution in the
asymptotic case is slow (Gans/Robertson 1981)

I Somers’ D:
I Define TY as number of pairs with equal y but unequal x
I DYX = C−D

C+D+TY
I improvement in predicting X attributed to knowing an

observation’s value Y
I Note, ranksum and signrank both test DYX = 0
I Asymptotic approximations work when smaller of the two

samples has N ≥ 8
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