GV300 Quantitative Political Analysis

Week 7 Hypothesis testing

Dominik Duell (University of Essex)

November 13, 2019

Hypothesis testing and probability

Test distribution Test procedure and terminology

Hypothesis testing and probability

Consider the regression output below:

. reg voteLabour income;

Source	SS	df	MS		Number of obs = 13500
+					F(1, 13498) = 2214.01
Model	475.32687	1 475	5.32687		Prob > F = 0.0000
Residual	2897.8935	13498 .214	1690584		R-squared = 0.1409
+					Adj R-squared = 0.1408
Total	3373.22037	13499 .249	9886686		Root MSE = .46335
voteLabour	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
income	0092478	.0001965	-47.05	0.000	0096330088625
_cons	.9457103	.010503	90.04	0.000	.925123 .9662976

It features the result of two hypothesis tests? Where are these results? Which hypothesis is tested precisely?

• Let's start again with a by now well known example:

- Say we flip a fair coin 20 times and we are interested in the number of heads- that's random variable H
- ► What is *E*[*H*] = 10
- What is the PMF?

Hypothesis testing and probability

Test distribution Test procedure and terminology

- ► a p-value is an expression of a conditional probability
- we learn: assume that this is the distribution of our outcome of interest, what is then the probability of an outcome as extreme as our hypothesized outcome X?

Hypothesis testing and probability

Test distribution Test procedure and terminology

- In this space, each point is a pair p_H, h_o
 - Event A: true distribution is p_H
 - Event B: we observe h_o

- Hypothesis test considers
 p(B|A)
- Not the same as P(A|B), needs far more information
- But we actually want to know P(A|B), we want to know the probability that true distribution is p_H given that we observe a particular outcome h₀

Hypothesis testing and probability

Test distribution Test procedure and terminology

- Event B: 15 or more heads
- Event A: the coin is fair
 same PMF as before
- We do not know P(A) and P(B) but we can calculate

P(B|A)

- If we observe more than 15 heads, the probability of this occurring given a fair coin is about 2.8%
- Usually we fix level of significance, α and ask: what is the largest value of h_o that occurs with a probability less than α

What did we do here?

- Call event A the hypothesis: the coin is fair
- Observing B, we reject this hypothesis observing 15 heads out of 20 coins is just too extreme of an outcome to could have come from a fair coin.
- This is not a statement about something being true or false!

Here is another example:

income							
	clinton	trump	other/no answer				
under \$30,000 17%	53%	41%	6%				
\$30k-\$49,999 19%	51%	42%	7%				
\$50k-\$99,999 31%	46%	50%	4%				
\$100k-\$199,9 24%	47%	48%	5%				
\$200k-\$249,9 4%	⁹⁹⁹ 48%	49%	3%				
\$250,000 or more 6%	46%	48%	6%				
24537 respondents							

- Call event A the hypothesis: poor voters are more likely to vote for Clinton than Trump
- The data used here gives you: observing event B (that many poor voters vote for Clinton), can we rejecting the hypothesis? – maybe but whats the distribution of the test statistic?
- Again, this is not a statement about something being true or false!

10/31

Summary of logic of hypothesis testing:

- Generally, comparison of the *actual* statistic of interest computed from our sample and what we would **expect** the statistic to look like computed from the population
 - A specific example: comparison of the actual relationship between X and Y in our sample with the relationship between X and Y in the underlying population
- We judge the probability by which we think we found a relationship in our sample that is close to what we would expect to find in the population by the **p-value**:
 - probability that the statistic computed from our sample is arising by chance

Know your distribution Important test distributions

Test distribution

Know your distribution Important test distributions

Know your distribution

- We need the population distribution of our variable or the distribution of our test statistic to be able to assess our hypothesis, how do we get there?
- Combinations, recall coin flipping example above often complicated
- Easy when population normally distributed not the case in many applications
- When non-normal population, Central Limit Theorem helps many times and we are back to the well understood normal distribution

Know your distribution Important test distributions

Law of large numbers

- Let X_1, \ldots, X_n be independent and identically distributed (iid) random variables with mean μ and standard deviation σ
- If we estimate the population mean μ with the sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \dots$
- ▶ with a sufficiently large sample . . .
 - we can get arbitrarily close to μ or
 - ► $plim(\overline{X}_n) = \mu$ which is another way of saying: $\lim_{n\to\infty} P(|\overline{X}_n - \mu|) < \epsilon) = 1$ for any small ϵ
- In other words, the law of large numbers states that the average of realized values from a large number of experiments (samples) is close to the expected value of the underlying population

Know your distribution Important test distributions

Law of large numbers

► We can restate the law of large numbers for any arbitrary statistic, that is any arbitrary function f(x), we may be interested in:

$$plim\frac{1}{n}\sum_{i=1}^{n}f(x_i)=E[f(x)]$$

Know your distribution Important test distributions

Central limit theorem

► Then,

$$Z_n = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma}$$

has an $\ensuremath{\textit{asymptotic}}$ standard normal distribution with mean 0 and standard deviation 1

where asymptotic means that the distribution of Z_n approximates the standard normal distribution very, very, very closely

Know your distribution Important test distributions

Central limit theorem

- We refer to Z_n as the standardized version of $\overline{X_n}$
- In other words, the central limit theorem states that the sampling distribution of the mean of any iid random variable approximates the normal distribution with increasing sample size
- Regardless of the population distribution of Xs, $Z_n \sim N(0, 1)$
- We could have looked at the non-standardize version $\overline{X_n}$, that is not divide by σ or

$$L_n = \sqrt{n}\overline{X}_n - \mu$$

where $L_n \sim N(0, \sigma)$ but we will mostly work with Z_n

Law of large numbers and central limit theorem

► Law of large numbers:

- the average of many measurements is more accurate than a single measurement
- As *n* grows large, the probability that \overline{X}_n is close to μ is 1
- Central limit theorem:
 - As *n* grows, the distribution of Z_n converges to the normal distribution with N(0, σ²)
 - CTL implies approximation that becomes better with growing n

Know your distribution Important test distributions

Important test distributions

Know your distribution Important test distributions

Normal distribution

- denote normal distribution with mean μ and variance σ^2 , $N(\mu, \sigma^2)$
- continuous distribution
- density at point x:

$$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Know your distribution Important test distributions

What is the normal distribution good for?

► standard/z-score:

to convert to normally distributed scores

$$\blacktriangleright z = \frac{x-\mu}{\sigma}$$

- where μ is the population mean
- \blacktriangleright note, based on assumption about population μ and σ
- \blacktriangleright usual rule of thumb, when n> 30, sample standard deviation s approximates σ

If we know population dispersion!

Know your distribution Important test distributions

t-distribution

Should we do not know the population dispersion

t-score:

•
$$t = \sqrt{n} \frac{\overline{x} - \mu}{s} = \frac{\overline{x} - \mu}{s_{\overline{x}}}$$

- ▶ where µ is the population mean, x̄ the sample mean, s the sample standard deviation, and n the sample size
- based on assumption about population μ only

Know your distribution Important test distributions

Normal and t-distribution

What else is great about the normal distribution?

- You can scale it, or if X ~ N(μ, σ²) then aX + b ~ N(aμ + b, a²σ²)
- You can combine random variables, or if X and Y are independent, with X ~ N(μ₁, σ₁²) and Y ~ N(μ₂, σ₂²), then X + Y ~ N(μ₁ + μ₂, σ₁² + σ₂²)
- You can work with squared objects: If X₁,..., X_n are iid random variables which are distributed normally, then ∑ⁿ_{i=1} X²_i is also distributed normal!
- ► Also holds true for ratios, proportions of random variables

Know your distribution Important test distributions

What else is great about the normal distribution?

Also, if $X \sim N(\mu, \sigma^2)$

- ▶ with 68% probability, X lies between $\mu \sigma$ and $\mu + \sigma$
- ▶ with 95% probability, X lies between $\mu 2\sigma$ and $\mu + 2\sigma$
- with 99% probability, X lies between $\mu 3\sigma$ and $\mu + 3\sigma$

Test procedure and terminology

Summary of standard procedure

- Generate a meaningful hypothesis
- Find a valid test statistic
- Derive the distribution of the test-statistic:
 - Based on theory
 - Exact
 - Simulated
- ► From distribution obtain/make:
 - Critical value
 - ► p-value
 - Rejection decision

A cautionary note on p-values

Source: Nuzzo (2015), p.2

A cautionary note on p-values

- p-values do not say anything about size of effect associated with the test statistic
- Assumption of **random** sample from the population is crucial
- p-value of .001 does not say "an effect occurs with probability .999"
- we need to know the prior odds of an effect
- the more implausible the original hypothesis, the higher the probability of a type I error – independent of p-value
- When we learn whether something did not happen by chance does not mean we learned anything bout why something happened! No causal effect established!

p-values and statistical significance

- The statement that a statistic (e.g., describing a relationship between variables X and Y) is statistical significant is arbitrary: I rests on ...
 - the researchers statement of the null hypothesis (a theoretical construct)
 - the chosen level of significance that defines the statistic's critical value

More terminology

Null hypothesis vs alternative hypothesis

► Type 1 error:

- Reject null even though it is true
- Level of significance of a test α is probability of a Type 1 error
- ► Type 2 error:
 - Failing to reject null even though it is false
 - β probability of a Type 2 error
 - Power of a Test: 1β