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Consider the regression output below:
. reg voteLabour income;

Source | SS df MS Number of obs = 13500
-------------+------------------------------ F( 1, 13498) = 2214.01

Model | 475.32687 1 475.32687 Prob > F = 0.0000
Residual | 2897.8935 13498 .214690584 R-squared = 0.1409

-------------+------------------------------ Adj R-squared = 0.1408
Total | 3373.22037 13499 .249886686 Root MSE = .46335

------------------------------------------------------------------------------
voteLabour | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
income | -.0092478 .0001965 -47.05 0.000 -.009633 -.0088625
_cons | .9457103 .010503 90.04 0.000 .925123 .9662976

------------------------------------------------------------------------------

It features the result of two hypothesis tests? Where are these
results? Which hypothesis is tested precisely?
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I Let’s start again with a by now well known example:
I Say we flip a fair coin 20 times and we are interested in the

number of heads– that’s random variable H
I What is E [H] = 10
I What is the PMF?
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I a p-value is an expression of a conditional probability
I we learn: assume that this is the distribution of our

outcome of interest, what is then the probability of an
outcome as extreme as our hypothesized outcome X?
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A B

I In this space, each point is
a pair pH , ho
I Event A: true

distribution is pH
I Event B: we observe ho

I Hypothesis test considers
p(B|A)

I Not the same as P(A|B),
needs far more information

I But we actually want to
know P(A|B), we want to
know the probability that
true distribution is pH
given that we observe a
particular outcome h0
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A B

I Consider:
I Event B: 15 or more

heads
I Event A: the coin is fair

– same PMF as before
I We do not know P(A) and

P(B) but we can calculate

P(B|A)

I If we observe more than 15
heads, the probability of
this occurring given a fair
coin is about 2.8%

I Usually we fix level of
significance, α and ask:
what is the largest value of
ho that occurs with a
probability less than α
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What did we do here?
I Call event A the hypothesis: the coin is fair
I Observing B, we reject this hypothesis – observing 15 heads

out of 20 coins is just too extreme of an outcome to could
have come from a fair coin.

I This is not a statement about something being true or
false!
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Here is another example:

I Call event A the
hypothesis: poor voters are
more likely to vote for
Clinton than Trump

I The data used here gives
you: observing event B
(that many poor voters
vote for Clinton), can we
rejecting the hypothesis? –
maybe but whats the
distribution of the test
statistic?

I Again, this is not a
statement about
something being true or
false! 10 / 31
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Summary of logic of hypothesis testing:
I Generally, comparison of the actual statistic of interest

computed from our sample and what we would expect the
statistic to look like computed from the population
I A specific example: comparison of the actual relationship

between X and Y in our sample with the relationship between
X and Y in the underlying population

I We judge the probability by which we think we found a
relationship in our sample that is close to what we would
expect to find in the population by the p-value:
I probability that the statistic computed from our sample is

arising by chance
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Know your distribution

I We need the population distribution of our variable or the
distribution of our test statistic to be able to assess our
hypothesis, how do we get there?

I Combinations, recall coin flipping example above – often
complicated

I Easy when population normally distributed – not the case in
many applications

I When non-normal population, Central Limit Theorem helps
many times and we are back to the well understood normal
distribution
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Law of large numbers
I Let X1, . . . ,Xn be independent and identically distributed (iid)

random variables with mean µ and standard deviation σ
I If we estimate the population mean µ with the sample mean

Xn = 1
n

n∑
i=1

Xi . . .

I with a sufficiently large sample . . .
I we can get arbitrarily close to µ or
I plim(X n) = µ

which is another way of saying: limn→∞ P(|X n − µ|) < ε) = 1
for any small ε

I In other words, the law of large numbers states that the
average of realized values from a large number of
experiments (samples) is close to the expected value of the
underlying population
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Law of large numbers

I We can restate the law of large numbers for any arbitrary
statistic, that is any arbitrary function f (x), we may be
interested in:

plim 1
n

n∑
i=1

f (xi ) = E [f (x)]
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Central limit theorem

I Let X1, . . . ,Xn be independent and identically distributed
random variables with mean µ and standard deviation σ and
Xn = 1

n
n∑

i=1
Xi

I Then,

Zn =
√

nXn − µ
σ

has an asymptotic standard normal distribution with mean 0
and standard deviation 1

I where asymptotic means that the distribution of Zn
approximates the standard normal distribution very, very, very
closely
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Central limit theorem

I We refer to Zn as the standardized version of Xn
I In other words, the central limit theorem states that the

sampling distribution of the mean of any iid random variable
approximates the normal distribution with increasing sample
size

I Regardless of the population distribution of X s, Zn ∼ N(0, 1)
I We could have looked at the non-standardize version Xn, that

is not divide by σ or

Ln =
√

nXn − µ

where Ln ∼ N(0, σ) but we will mostly work with Zn
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Law of large numbers and central limit theorem

I Law of large numbers:
I the average of many measurements is more accurate than a

single measurement
I As n grows large, the probability that X n is close to µ is 1

I Central limit theorem:
I As n grows, the distribution of Zn converges to the normal

distribution with N(0, σ2)
I CTL implies approximation that becomes better with growing n
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Normal distribution

I denote normal distribution with mean µ and variance σ2,
N(µ, σ2)

I continuous distribution
I density at point x :

1
σ
√

2π
e

(x−µ)2

2σ2

20 / 31



Hypothesis testing and probability
Test distribution

Test procedure and terminology

Know your distribution
Important test distributions

What is the normal distribution good for?

I standard/z-score:
I to convert to normally distributed scores
I z = x−µ

σ
I where µ is the population mean
I note, based on assumption about population µ and σ
I usual rule of thumb, when n > 30, sample standard deviation s

approximates σ

If we know population dispersion!
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t-distribution

Should we do not know the population dispersion
I t-score:

I t =
√

n x−µ
s = x−µ

sx
I where µ is the population mean, x the sample mean, s the

sample standard deviation, and n the sample size
I based on assumption about population µ only

22 / 31



Hypothesis testing and probability
Test distribution

Test procedure and terminology

Know your distribution
Important test distributions

Normal and t-distribution
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What else is great about the normal distribution?

I You can scale it, or if X ∼ N(µ, σ2) then
aX + b ∼ N(aµ+ b, a2σ2)

I You can combine random variables, or if X and Y are
independent, with X ∼ N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2), then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2)
I You can work with squared objects: If X1, . . . ,Xn are iid

random variables which are distributed normally, then
n∑

i=1
X 2

i

is also distributed normal!
I Also holds true for ratios, proportions of random variables
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What else is great about the normal distribution?

Also, if X ∼ N(µ, σ2)
I with 68% probability, X lies between µ− σ and µ+ σ

I with 95% probability, X lies between µ− 2σ and µ+ 2σ
I with 99% probability, X lies between µ− 3σ and µ+ 3σ
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Summary of standard procedure

I Generate a meaningful hypothesis
I Find a valid test statistic
I Derive the distribution of the test-statistic:

I Based on theory
I Exact
I Simulated

I From distribution obtain/make:
I Critical value
I p-value
I Rejection decision
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A cautionary note on p-values

Source: Nuzzo (2015), p.2
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A cautionary note on p-values

I p-values do not say anything about size of effect associated
with the test statistic

I Assumption of random sample from the population is crucial
I p-value of .001 does not say “an effect occurs with probability

.999”
I we need to know the prior odds of an effect
I the more implausible the original hypothesis, the higher the

probability of a type I error – independent of p-value
I When we learn whether something did not happen by

chance does not mean we learned anything bout why
something happened! No causal effect established!
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p-values and statistical significance

I The statement that a statistic (e.g., describing a relationship
between variables X and Y) is statistical significant is
arbitrary: I rests on . . .
I the researchers statement of the null hypothesis (a theoretical

construct)
I the chosen level of significance that defines the statistic’s

critical value

30 / 31



Hypothesis testing and probability
Test distribution

Test procedure and terminology

More terminology

I Null hypothesis vs alternative hypothesis
I Type 1 error:

I Reject null even though it is true
I Level of significance of a test α is probability of a Type 1

error
I Type 2 error:

I Failing to reject null even though it is false
I β probability of a Type 2 error
I Power of a Test: 1− β
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