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2. Bootstrapping
3. Applications (see problem set session 4)
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Resampling
Evaluation criteria

To evaluate test and estimators
1. Make assumptions about the world:

I population distribution
I characteristics of relationship between variables of interest

2. Simulate S samples according to assumptions with N number
of observations

3. Apply test/estimator
4. Evaluate test/estimation output
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Evaluation criteria
I Robustness:

I Unbiasedness of estimator
I Simulation average of θ̂, θ̂, is the estimate of E(θ̂)
I Accounting for simulation error, θ̂ should be close to assumed

value θ

I Standard errors
I Simulation variance of θ̂, s2

θ̂
is the estimate of σ2

θ̂

I Standard deviation of simulated θ̂, sθ̂ is estimate of σθ̂
I Accounting for simulation error, sθ̂ should be close to

simulated standard errors se(θ̂)
I Distributions

I shape of distribution of statistic should be close to assumed
distribution of the test

I Distribution of p-value: if assumed distribution is correct
distribution for test, p-value is uniformly distributed on (0,1)
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Evaluation criteria

I Small type I error: low probability of falsely rejecting H0
I Size of test
I Estimated by proportion of simulations that lead to rejection of

H0

I Not discussed before: Coverage probability: actual
probability that the confidence interval contains the true value
of the statistic

I High statistical power

DUELL: SMALL SAMPLE ANALYSIS 8 / 58



Recap simulations
Setting up simulations

Resampling
Basics
Bootstrapping

Resampling

DUELL: SMALL SAMPLE ANALYSIS 9 / 58



Recap simulations
Setting up simulations

Resampling
Basics
Bootstrapping

Basics

DUELL: SMALL SAMPLE ANALYSIS 10 / 58



Recap simulations
Setting up simulations

Resampling
Basics
Bootstrapping

I Uniform random selection of observations
I Bootstrap: with replacement
I Permutation: without replacement
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Small sample issues

I Resampling does not help with generating generalizable
statements per se because it only uses (limited) data at hand

I but, generalizations based on assumptions about parameters
that are not met are worse

I there we cannot even learn about the data we have
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Basics

I We will look at the non-parametric bootstrap
I Statistical inference by resampling without any assumptions

about underlying population
I Applied to standard errors, confidence bounds, test statistics

but also to check asymptotic behavior of estimators
I Also implemented with most standard estimation commands

in your preferred software (e.g., Stata: vce(bootstrap),
bootstrap-option)

I In bootstrap, each resampling draws the same total number
of observations (as in the original sample) but some
observations may show up multiple times and others not at all

I Good for alternative estimations methods and diagnostics

DUELL: SMALL SAMPLE ANALYSIS 15 / 58



Recap simulations
Setting up simulations

Resampling
Basics
Bootstrapping

Ideal and bootstrap world

Source: Hesterberg (2014), p.16
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Ideal and bootstrap world

Source: Hesterberg (2014), p.17
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Why would we want to use the bootstrap?

I Let’s treat our sample as the population and resample from it
– after all, it is the only information we have about the
population

I Very reasonable if sample is large and we just have problems
to accurately estimate our quantity of interest
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Why would we want to use the bootstrap

I What do we get out of it for small samples?
I NN bootstrap samples
I But, if the sample is biased, resampling those biased

observations makes them even more different from the
population

I However, already for N = 10, the number of distinct samples
is 92,378, with N = 20 and 2000 repetitions, the probability
that a bootstrap sample will be replicated is more than 0.95
(Hall 1992)

I We get a sampling distribution of the sample statistic in
question not an estimate of the population distribution!

I Valuable if estimate of sampling distribution of the sample
statistic hard to compute or inaccurate because of the small
sample
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Why would we want to use the bootstrap?

I What do we get out of it for small samples?
I Should help us with improving asymptotic approximations in

small samples – more accurate inferences
I Mostly not helping in arriving at better estimates: e.g. all

bootstrap samples will always be centered at the sample mean
– estimates shape and spread of sampling distribution

I In contrast to Monte Carlo, no assumptions about the
distribution nor the true value of parameters
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Procedure

I Say, we want to compute the standard error of test statistic θ̂
1. Compute θ̂
2. Take B samples from your sample with replacement
3. Estimate of variance of θ̂:

ˆvarboot(θ̂) = 1
B − 1

B∑
i=1

(θ̂∗
i − B∗)2 (1)

where θ̂∗
i , . . . , θ̂

∗
B denote the test statistics and

θ̂∗ = 1/B
∑B

i=1 θ̂
∗
i
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Procedure

I Bootstrap “standard error” is seBoot(θ̂) =
√

ˆvarboot(θ̂)

I Bootstrap bias estimate is θ̂∗ − θ̂
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General pitfalls
I Are resampled observations independent? – use proper

clustering and stratification of data when resampling
I bootstrap assumes that estimator is smooth (

√
N − consistent

and asymptotically normal)
I Don’t forget to the set seed #
I Check default setting of number of repetitions of your

preferred software when implementing the bootstrap – increase
for results to be published and/or less well-behaved estimators

I How many repetitions? Efron/Tibshirani (1993) said 50 is
mostly good enough . . .

I Note, it is the more complicated estimators (more
computationally intensive) that actually require more
replications
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All the different bootstraps

I Estimates:
bootstrap _b _se: reg var cat

I Other quantities of interest:
bootstrap diff = (r(mu_1) - r(mu_2)): ttest var, by(cat)

I Your own program:
bootstrap doodle = r(doodle): yourProgram
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Example: bootstrap differences in means

ttest var, by(cat);

Two-sample t test with equal variances
------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--------------------------------------------------------------------

0 | 9 6.777778 1.769948 5.309844 2.69627 10.85929
1 | 6 10.5 1.979057 4.84768 5.412672 15.58733

---------+--------------------------------------------------------------------
combined | 15 8.266667 1.367886 5.297798 5.332844 11.20049
---------+--------------------------------------------------------------------

diff | -3.722222 2.707443 -9.571297 2.126853
------------------------------------------------------------------------------

diff = mean(0) - mean(1) t = -1.3748
Ho: diff = 0 degrees of freedom = 13

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0962 Pr(|T| > |t|) = 0.1924 Pr(T > t) = 0.9038
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Example: bootstrap differences in means

. bootstrap diff = (r(mu_1) - r(mu_2)), seed(010101) nodots: ttest var, by(cat)

Warning: Because ttest is not an estimation command or does not set e(sample), bootstrap has no
way to determine which observations are used in calculating the statistics and so assumes that all
observations are used. This means that no observations will be excluded from the resampling
because of missing values or other reasons.
If the assumption is not true, press Break, save the data, and drop the observations that are to
be excluded. Be sure that the dataset in memory contains only the relevant data.

Bootstrap results Number of obs = 15
Replications = 50

command: ttest var, by(cat)
diff: r(mu_1) - r(mu_2)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
diff | -3.722222 2.648617 -1.41 0.160 -8.913416 1.468972

------------------------------------------------------------------------------
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Evaluate and fix your bootstrap for small samples

I Number of replications
I Characteristics of statistic of interest
I Bias of the bootstrap
I Skewness of distribution
I Appropriateness of confidence intervals
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Number of replications
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Example: bootstrap differences in means

. bootstrap diff = (r(mu_1) - r(mu_2)), seed(010101) nodots: ttest var, by(cat)

Bootstrap results Number of obs = 15
Replications = 50

command: ttest var, by(cat)
diff: r(mu_1) - r(mu_2)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
diff | -3.722222 2.648617 -1.41 0.160 -8.913416 1.468972

------------------------------------------------------------------------------

Number of replications may be too low.
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Example: bootstrap differences in means
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Example: bootstrap differences in means
Let’s consider different B
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Example: bootstrap differences in means
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Example: bootstrap differences in means
Also with different B
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Much better!
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Bootstrap properties of statistics
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Example: bootstrap the median
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Often discontinuous empirical distribution function!
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Example: bootstrap the median in a larger sample
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Looks much better in a larger sample but is it the number of
replications?
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Example: bootstrap the median with more replications
Let’s try different B
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No improvement. Underlying variable not smooth enough, small
sample provides too little variation.
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Evaluating the bootstrap: Bias
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Basics

I Bootstrap bias: θ̂∗ − θ̂
I What produces bias:

I Non-linear transformations of the statistic
I Bootstrap procedure itself
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Example: bootstrap of the mean
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Example: bootstrap of the median
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Example: bootstrap and bias correction
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Bootstrapping from skewed distributions
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Example: bootstrap of mean
Which B does it take to account for the distortion?
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Example: bootstrap of in mean
Compare to less distorted raw data:
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Example: bootstrap of in mean
What about bias with distorted raw data?
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Appropriate confidence bounds
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Example: bootstrap differences in means

. bootstrap diff = (r(mu_1) - r(mu_2)), seed(010101) nodots: ttest var, by(cat)

Bootstrap results Number of obs = 15
Replications = 50

command: ttest var, by(cat)
diff: r(mu_1) - r(mu_2)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
diff | -3.722222 2.648617 -1.41 0.160 -8.913416 1.468972

------------------------------------------------------------------------------

Bootstrap percentile confidence intervals probably too short for our
small sample.
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Example: bootstrap differences in means
Let’s consider different B
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Normal percentiles work for such well-behaved distribution function
as produced by a bootstrap of means.
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Example: bootstrap confidence intervals

Do we get more help from Stata? We do
I normal-based ci: [θ̂ − z1−α/2ŝe, θ̂ + z1−α/2ŝe]
I (empirical) percentile ci: [θ∗

α/2, θ1−α/2]
I bias-corrected and accelerated method ci (bca): [θ∗

p1 , θ
∗
p2 ]
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Example: bootstrap confidence intervals: bca
. bootstrap theta = r(mean), seed(010101) nodots reps(3000) bca: sum var;
Bootstrap results Number of obs = 15

Replications = 3000

command: summarize var
theta: r(mean)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
theta | 8.266667 1.347879 6.13 0.000 5.624872 10.90846

------------------------------------------------------------------------------

. estat bootstrap, bca;
Bootstrap results Number of obs = 15

Replications = 3000

command: summarize var
theta: r(mean)

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
theta | 8.2666667 .0236222 1.3478791 5.6 10.8 (BCa)

------------------------------------------------------------------------------
(BCa) bias-corrected and accelerated confidence interval
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Bootstrap confidence intervals: bca with skewed data
. bootstrap theta = r(mean), seed(010101) nodots reps(3000) bca: sum varExp;
Bootstrap results Number of obs = 15

Replications = 3000

command: summarize varExp
theta: r(mean)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
theta | 8.235248 1.788733 4.60 0.000 4.729396 11.7411

------------------------------------------------------------------------------

. estat bootstrap, bca;
Bootstrap results Number of obs = 15

Replications = 3000

command: summarize varExp
theta: r(mean)

------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]

-------------+----------------------------------------------------------------
theta | 8.2352482 .0347594 1.7887332 5.023003 11.85562 (BCa)

------------------------------------------------------------------------------
(BCa) bias-corrected and accelerated confidence interval
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Bootstrap confidence intervals: bca

What is the bca-option doing?
I automatically adjusts for higher oder effects
I [θ∗

p1 , θ
∗
p2 ] where

I p1 = Φ
{

z0 + z0+z1−α/2
1−α(z0−z1−α/2)

}
and

I p0 = Φ
{

z0 + z0+z1−α/2
1−α(z0+z1−α/2)

}
I where z0 = Φ−1#(θ̂i ≤ θ̂)/k

I and α =
∑N

i=1(θ(·)− ˆθ(i))3

6
∑N

i=1(θ·−θ̂(i))23/2
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Bootstrap confidence intervals

I How good are those confidence intervals in terms of accuracy
(coverage probability)?

I Any other ideas for small samples with respect to confidence
intervals?

I Transformation of data to get a handle of the skewness or
kurtosis? Which transformation?

I Smoothed bootstrap:
I bootstrap and then pertubate each estimate by a noise term
I playing with noise term allows to simulate uncertainty we have

about our small sample
I Parametric bootstrap

I specify a model of the world and resample from it
I converges faster but potentially biased
I again, interesting to built a counterfactual world
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Summary of Small sample advice to assess bootstrap

I More bootstrap samples reduce variability of bootstrap
distribution but does not fundamentally change it

I Know your statistic and whether those are sensitive to a few
observations (see mean vs median example) Is the underlying
data “too” discrete?

I Assess transformations, bias of the statistic, and skweness of
the sampling distribution – what does it tell you about general
performance of the bootstrap and number of replications?

I Think about adjustments to confidence interval
I Lock at smoothness or parametric bootstrap (look at Poi

2004)
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