Analyzing Small Sample Experimental Data Session 2: Non-parametric tests and estimators I

Dominik Duell (University of Essex)

July 15, 2017

Pick an appropriate (non-parametric) statistic

- 1. Intro to non-parametric tests
- 2. Success probability: binomial test
- 3. Tests of differences between groups paired from one-sample and independent from two-sample
 - ► Fisher sign test and Wilcoxon rank sign test
 - ► Comparing success probabilities: Fisher's exact test
 - ► Median test and Wilcoxon/Mann-Whitney rank sum test
 - Kolmogorov-Smirnov equal distribution test
 - Kruskal-Wallis test
- 4. Alternatives to correlation coefficients bivariate relationships
 - ► Spearman's ρ
 - Kendall's τ
 - Goodman and Kruskal's gamma and Somers' D
- 5. Exercises (see problem set session 2)

Introduction

Success probability: binomial test One- or two-sample difference tests Alternatives to correlation coefficients

Introduction

What are non-parametric tests

Tests that

- make fewer assumptions about the population distribution-free tests
- ► are more robust to outliers and heterogeneity of variance
- are robust even if you cannot reasonably characterize the distribution of the underlying population
- are applicable for interval and ordinal data some for nominal data
- have test statistics that are distributed normally when N is large

When are non-parametric tests advantageous

- when assumptions of parametric tests/estimators are not met Example: t-test statistic does not have a t-distribution if underlying population not normal or sample size to small
- often easier to compute manually than their parametric alternatives
- we can often derive the exact distribution of the test statistic

Introduction

Success probability: binomial test One- or two-sample difference tests Alternatives to correlation coefficients

Disadvantages of non-parametric tests

- Mostly no estimates of variance
- Mostly no confidence intervals
- ► Need more observations to draw a conclusion with same certainty i.e., less powerful as parametric alternative when assumptions for parametric tests are met – often differences are small, though, and parametric alternatives perform vastly worse when assumptions are not met

Success probability: binomial test

Binomial test: Basics

- Observing outcomes of *n* independent repeated Bernoulli trials, what is the probability of success *p*?
- Assumptions:
 - 1. Dichotomous data: outcomes can be classified as either success or failure
 - 2. p remains constant for each trial
 - 3. *n* trials are independent
- $H_0: p = 0$
- Other tests/statistics below relate to the basic binomial test of significance
- ► Under assumptions 1-3, it is a distribution-free test of H₀ because the probability distribution of B is determined without further assumptions on the distribution of the underlying population

Binomial test: Procedure

- To H₀: p = 0 set the desired level of significance α and set B to number of observed successes
- ▶ Reject H_0 if $B \ge b_{\alpha_{lower}}$ and $B \le c_{\alpha}$
- ► where b_α is the upper α₁ percentile point and b_{α2} is the lower percentile point with α = α₁ + α₂

Binomial test: Example

- Say n = 8 and we test $H_0 : p = .4$ vs p > .4
- From the table of the binomial distribution for n = 8 and p = .4 we get

b	0	1	2	3	4	5	6	7	8
$Prob_{.4}(B \ge b)$	1	.9832	.8936	.6846	. 4059	.1737	.0498	.0085	.0007

Suppose we want α < .05, b_αs that satisfy Prob_{.4}(B ≥ b_α) = α are 6, 7, 8 − for the upper-tail test, reject H₀ : p = .4 if 6 or more successes are observed

Dependent samples Independent samples

One- or two-sample difference tests

Dependent samples Independent samples

- investigate treatment effects on
 - observations from one sample (paired or **dependent** data)
 - observations from two samples (independent data)
- Wilcoxon sign rank and Wilcoxon/Mann-Whitney rank sum tests in detail, lots of other tests

Dependent samples Independent samples

Dependent samples

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Sign test (Fisher)

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Sign test: Basics

- Alternative to paired t-test which assumes normality and equal variance across groups in underlying data
- Information taken from signs in difference between paired observations
- Assumptions:
 - ▶ paired observations (X₁¹, X₁²), ..., (X_N¹, X_N²) are random sample and iid
 - paired observations are dependent
 - ► paired differences come from same continuous distribution
 - ► Use when direction of difference between two measurements on same unit can be determined

Dependent samples Independent samples

Sign test: Procedure

- ► Compute difference D_i = X¹_i X²_i between N pairs of matched observations
- Say, θ is median of distribution of D_i
- ► H₀: θ = 0 vs H_A: θ > 0 or distribution of differences has median 0
- Test statistic D^+ is number of positive differences
- What is distribution of D⁺? Think of θ_i = 1ifD⁺ > 0 and 0 otherwise as Bernoulli random variable → Distribution is binomial
- ► Under H₀ number of positive and negative differences should be equal or H₀ : D⁺ ~ binomial(N, 1/2)
- Say number of positive D_i is n⁺, then B/2^N where B = (^N_{n⁺}) gives the probability of getting exactly as many positive D_i
- ► To get obtain a p-Value, sum all binomial coefficients that are small than B and divided by 2^N

Dependent samples Independent samples

- Consider the income-variable in gssData.dta
- ► Question: Did income increase from '08 to '12?
- Note, it is an ordinal measured variable, taking a difference may not make sense – assume for this example that it does

+-			+
	income08	income12	D_i
1.	3	19	-16
2.	4	9	-5
3.	17	20	-3
4.	15	17	-2
5.	14	16	-2
6.	20	21	-1
7.	20	21	-1
8.	22	22	0
9.	16	13	3
10.	21	17	4
11.	19	15	4
12.	25	19	6
13.	14	6	8
14.	21	12	9
15.	11	1	10
	+		+
DUE	LL: SMALL	SAMPLE A	VALYSIS

Dependent samples Independent samples

- Consider the income-variable in gssData.dta
- ► Differences: -10 -9 -8 -6 -4 -4 -3 0 1 1 2 2 3 5 16
- ► How likely is it to observe 7 positive D_i when H_0 if p = .5 is true
- ▶ What is the distribution of *D_i* we already know!
- Binomial with N = 15, p = .5, and x = 7: $Prob(X \le 7) = 0.50$

Dependent samples Independent samples

p =		0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
n= 14	x= 0	0.8687	0.7536	0.6528	0.5647	0.4877	0.4205	0.3620	0.3112	0.2670	0.2288	0.1028	0.0440	0.0178	0.0068	0.0024	0.0008	0.0002	0.0001
	1	0.9916	0.9690	0.9355	0.8941	0.8470	0.7963	0.7436	0.6900	0.6368	0.5846	0.3567	0.1979	0.1010	0.0475	0.0205	0.0081	0.0029	0.0009
	2	0.9997	0.9975	0.9923	0.9833	0.9699	0.9522	0.9302	0.9042	0.8745	0.8416	0.6479	0.4481	0.2811	0.1608	0.0839	0.0398	0.0170	0.0065
	3	1.0000	0.9999	0.9994	0.9981	0.9958	0.9920	0.9864	0.9786	0.9685	0.9559	0.8535	0.6982	0.5213	0.3552	0.2205	0.1243	0.0632	0.0287
	4	1.0000	1.0000	1.0000	0.9998	0.9996	0.9990	0.9980	0.9965	0.9941	0.9908	0.9533	0.8702	0.7415	0.5842	0.4227	0.2793	0.1672	0.0898
	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9985	0.9885	0.9561	0.8883	0.7805	0.6405	0.4859	0.3373	0.2120
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9978	0.9884	0.9617	0.9067	0.8164	0.6925	0.5461	0.3953
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9976	0.9897	0.9685	0.9247	0.8499	0.7414	0.6047
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9978	0.9917	0.9757	0.9417	0.8811	0.7880
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9983	0.9940	0.9825	0.9574	0.9102
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9989	0.9961	0.9886	0.9713
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9978	0.9935
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
n= 15	x= 0	0.8601	0.7386	0.6333	0.5421	0.4633	0.3953	0.3367	0.2863	0.2430	0.2059	0.0874	0.0352	0.0134	0.0047	0.0016	0.0005	0.0001	0.0000
	1	0.9904	0.9647	0.9270	0.8809	0.8290	0.7738	0.7168	0.6597	0.6035	0.5490	0.3186	0.1671	0.0802	0.0353	0.0142	0.0052	0.0017	0.0005
	2	0.9996	0.9970	0.9906	0.9797	0.9638	0.9429	0.9171	0.8870	0.8531	0.8159	0.6042	0.3980	0.2361	0.1268	0.0617	0.0271	0.0107	0.0037
	3	1.0000	0.9998	0.9992	0.9976	0.9945	0.9896	0.9825	0.9727	0.9601	0.9444	0.8227	0.6482	0.4613	0.2969	0.1727	0.0905	0.0424	0.0176
	4	1.0000	1.0000	0.9999	0.9998	0.9994	0.9986	0.9972	0.9950	0.9918	0.9873	0.9383	0.8358	0.6865	0.5155	0.3519	0.2173	0.1204	0.0592
	5	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9978	0.9832	0.9389	0.8516	0.7216	0.5643	0.4032	0.2608	0.1509
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9964	0.9819	0.9434	0.8689	0.7548	0.6098	0.4522	0.3036
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9994	0.9958	0.9827	0.9500	0.8868	0.7869	0.6535	0.5000
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9992	0.9958	0.9848	0.9578	0.9050	0.8182	0.6964
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9992	0.9963	0.9876	0.9662	0.9231	0.8491
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9972	0.9907	0.9745	0.9408
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9981	0.9937	0.9824
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9989	0.9963
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Dependent samples Independent samples

Sign test: Example

Sign test

sign	observed	expected		
positive	7	7		
negative	7	7		
zero	1	1		
all	15	15		
One-sided tes	ts:			
Ho: median	of income08 -	income12 = 0 v	s.	
Ha: median	of income08 -	income12 > 0		
Pr(#pos	itive >= 7) =			
Bino	mial(n = 14, x	>= 7, p = 0.5	6) = 0.6047	
Ho: median	of income08 -	income12 = 0 v	s.	
Ha: median	of income08 -	income12 < 0		
Pr(#neg	ative >= 7) =			
Bino	mial(n = 14, x	>= 7, p = 0.5	5) = 0.6047	
Two-sided tes	t:			
Ho: median	of income08 -	income12 = 0 v	s.	
Ha: median	of income08 -	income12 != 0		
Pr(#pos	itive >= 7 or	#negative >= 7	') =	
min(1, 2*Binomial(n = 14, x >= 7	(, p = 0.5)) =	1.0000

Dependent samples Independent samples

p =		0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
n= 14	x= 0	0.8687	0.7536	0.6528	0.5647	0.4877	0.4205	0.3620	0.3112	0.2670	0.2288	0.1028	0.0440	0.0178	0.0068	0.0024	0.0008	0.0002	0.0001
	1	0.9916	0.9690	0.9355	0.8941	0.8470	0.7963	0.7436	0.6900	0.6368	0.5846	0.3567	0.1979	0.1010	0.0475	0.0205	0.0081	0.0029	0.0009
	2	0.9997	0.9975	0.9923	0.9833	0.9699	0.9522	0.9302	0.9042	0.8745	0.8416	0.6479	0.4481	0.2811	0.1608	0.0839	0.0398	0.0170	0.0065
	3	1.0000	0.9999	0.9994	0.9981	0.9958	0.9920	0.9864	0.9786	0.9685	0.9559	0.8535	0.6982	0.5213	0.3552	0.2205	0.1243	0.0632	0.0287
	4	1.0000	1.0000	1.0000	0.9998	0.9996	0.9990	0.9980	0.9965	0.9941	0.9908	0.9533	0.8702	0.7415	0.5842	0.4227	0.2793	0.1672	0.0898
	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9985	0.9885	0.9561	0.8883	0.7805	0.6405	0.4859	0.3373	0.2120
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9978	0.9884	0.9617	0.9067	0.8164	0.6925	0.5461	0.3953
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9976	0.9897	0.9685	0.9247	0.8499	0.7414	0.6047
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9978	0.9917	0.9757	0.9417	0.8811	0.7880
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9983	0.9940	0.9825	0.9574	0.9102
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9989	0.9961	0.9886	0.9713
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9978	0.9935
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
n= 15	x= 0	0.8601	0.7386	0.6333	0.5421	0.4633	0.3953	0.3367	0.2863	0.2430	0.2059	0.0874	0.0352	0.0134	0.0047	0.0016	0.0005	0.0001	0.0000
	1	0.9904	0.9647	0.9270	0.8809	0.8290	0.7738	0.7168	0.6597	0.6035	0.5490	0.3186	0.1671	0.0802	0.0353	0.0142	0.0052	0.0017	0.0005
	2	0.9996	0.9970	0.9906	0.9797	0.9638	0.9429	0.9171	0.8870	0.8531	0.8159	0.6042	0.3980	0.2361	0.1268	0.0617	0.0271	0.0107	0.0037
	3	1.0000	0.9998	0.9992	0.9976	0.9945	0.9896	0.9825	0.9727	0.9601	0.9444	0.8227	0.6482	0.4613	0.2969	0.1727	0.0905	0.0424	0.0176
	4	1.0000	1.0000	0.9999	0.9998	0.9994	0.9986	0.9972	0.9950	0.9918	0.9873	0.9383	0.8358	0.6865	0.5155	0.3519	0.2173	0.1204	0.0592
	5	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9978	0.9832	0.9389	0.8516	0.7216	0.5643	0.4032	0.2608	0.1509
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9964	0.9819	0.9434	0.8689	0.7548	0.6098	0.4522	0.3036
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9994	0.9958	0.9827	0.9500	0.8868	0.7869	0.6535	0.5000
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9992	0.9958	0.9848	0.9578	0.9050	0.8182	0.6964
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9992	0.9963	0.9876	0.9662	0.9231	0.8491
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9972	0.9907	0.9745	0.9408
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9981	0.9937	0.9824
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9989	0.9963
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Dependent samples Independent samples

Sign test: Small sample issues

- ► Only needs sign of difference, not difference itself
- Less efficient than Wilcoxon sign-rank test (uses only sign not ordering) but rather robust to outliers
- ► How to deal with D_i = 0: Usually ignored but reduces effective sample size
- works for interval data but pay attention to ties which correction for tied values?
- ► Generally, within-subject design may require fewer subjects

Dependent samples Independent samples

Wilcoxon sign-rank test

Dependent samples Independent samples

Wilcoxon sign-rank test: Basics

- Alternative to paired t-test which assumes normality and equal variance across groups in underlying data
- Information taken from signs in difference between paired observations (pre- vs post-treatment)
- When actual difference pre- vs post-treatment is greater than 0, tendency to larger proportion of positive differences

Dependent samples Independent samples

Wilcoxon sign-rank test: Basics

- Assumptions:
 - ▶ paired observations (X₁¹, X₁²), ..., (X_N¹, X_N²) are random sample and iid i.e., differences are mutually independent (while paired observations are dependent)
 - paired differences come from a continuous distribution
- ► Test of null hypothesis of zero shift in location (no treatment effect), $H_0: \theta = 0$ null hypothesis states that each of the distributions for the differences is symmetrically distributed about 0
- ► Use when direction of difference and magnitude between two measurements on same unit can be determined

Dependent samples Independent samples

Wilcoxon sign-rank test: Procedure

- ► Compute difference D_i = X¹_i X²_i between N pairs of matched observations
- Order absolute values of differences from smallest to largest
- ► Let S_1^2 denote the rank of D_1, \ldots, S_N denote the rank of D_N in the joint ordering
- Assign average rank to ties
- ► Wilcoxon signed rank statistic, W⁺, is sum of positive signed ranks
- ► Under H₀: θ = 0, W⁺ is distributed according to the distribution derived by Wilcoxon (1954)
- Reject H_0 if $W^+ \ge w_{\alpha/2}$ or $W^+ \le \frac{n(n+2)}{2} w_{\alpha/2}$

Dependent samples Independent samples

Wilcoxon sign-rank test: Distribution of W

- Based on permutations of all possible rankings
- ► Btw, related to Mann-Whitney U
- Where is the distribution coming from?

Dependent samples Independent samples

Wilcoxon sign-rank test: Example

	+				
	income08	income12	D_i	absD_i	rank
1.	22	22	0	0	1
2.	20	21	-1	1	2.5
З.	20	21	-1	1	2.5
4.	14	16	-2	2	4.5
5.	15	17	-2	2	4.5
6.	1 16	13	3	3	6.5
7.	17	20	-3	3	6.5
8.	21	17	4	4	8.5
9.	19	15	4	4	8.5
10.	4	9	-5	5	10
11.	25	19	6	6	11
12.	14	6	8	8	12
13.	21	12	9	9	13
14.	11	1	10	10	14
15.	3	19	-16	16	15
	+				+

Dependent samples Independent samples

Wilcoxon sign-rank test: Distribution of W^+

- ► Sum of ranks of positive differences: 74.5
- ► (Sum of ranks of negative difference: 45.5)
- ► Lowest possible rank? 0 no difference is positive
- ► Highest possible rank? N(N+1)/2 = 15(16)/2 = 120 all differences are positive

Dependent samples Independent samples

Wilcoxon sign-rank test: Distribution of W^+

- ► What is the smallest significance level at which these data lead to rejection of H₀?
- For our example, we have N = 14 and $W^+ = 74.5$

Dependent samples Independent samples

Wilcoxon sign-rank test: Critical values of W^+ for N = 14

.117	n = 14	66	212		93	
.102	" 14	67	.213		94	
.088		69	.190		95	
.076		60	.179		96	
.065		70	.103		97	
.055		70	.148		98	
.046		71	.134		99	
.039		72	.121		100	
.032		75	.108		101	
.026		74	.097		102	
.021		15	.086		103	
.017		76	.077		104	
.013		11	.068		105	
.010		78	.059		106	
.008		79	.052		107	
.006		80	.045		108	
.005		81	.039		109	
.003		82	.034		110	
.002		83	.029		111	
.002		84	.025		112	
.001		85	.021		113	
.001		80	.016		114	
<.0005		8/	.013	<i>n</i> = 16	03	
		88	010		04	
.207		89	.010		95	
.188		90	.008		96	
.170		91	005		97	
.153		92	004		98	
.137		95	003		99	
.122		94	003		100	
.108		95	002		101	
LL SAMPLE C95 LYSIS		96	002		102	
.084		91	.002		103	

DUELL: SMALL SAM

31/95

Dependent samples Independent samples

Wilcoxon sign-rank test: Example

- Reject H_0 if $W^+ \ge w_{\alpha/2}$ or $W^+ \le \frac{n(n+2)}{2} w_{\alpha/2}$
- For $\alpha = .052$, reject if $W^+ > 80$ or $W^+ < \frac{15(16)}{2} - 80 = 120 - 80 = 40$ - so we do not reject
- What is the large sample approximation:
 - ▶ Standardize W^+ : Under the null, $E(W^+) = \frac{n(n+1)}{4}$ and $var(W^+) = \frac{n(n+1)(2n+1)}{24}$ • $W^* = \frac{W^+ - E(W^+)}{\sqrt{var(W^+)}}$

 - With $n \to \infty$, $W^+ \sim N(0,1)$
 - Adjustments for ties are needed

Dependent samples Independent samples

Wilcoxon sign-rank test: Example

Wilcoxon signed-rank test

sign	obs	sum ra	nks	expected
positive	7	7	3.5	59.5
negative	7	4	5.5	59.5
zero	1		1	1
all	15		120	120
unadjusted variance		310.00		
adjustment for ties		-0.50		
adjustment for zeros	5	-0.25		
adjusted variance		309.25		
Ho: income08 = incom z = 0	ne12).796			
Prob > z = 0	.426	0		

Dependent samples Independent samples

signrankex income08 = income12

Wilcoxon signed-rank test

expected	sum ranks	obs	1	sign	
52.5 52.5	66.5 38.5	7 7 1	 	positive negative zero	
120	120	15		all	
		come12 14.000 0.3970	= inc S = S =	o: income08 Prob >=	Ho:

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Wilcoxon sign-rank test: Small sample issues

- Wilcoxon sign-rank test incorporates more information than sign-test but also needs more information
- ► How to deal with D_i = 0: Usually ignored but reduces effective sample size
- works for interval data but pay attention to ties which correction for tied values?
- ► Generally, within-subject design may require fewer subjects

Dependent samples Independent samples

Confidence interval based on Wilcoxon sign-rank statistic
Dependent samples Independent samples

CI for Wilcoxon sign rank test: Basics

- Related to Wilcoxon sign-rank statistic and Hodges-Lehman location estimator
- ► Hodges-Lehman estimator for real treatment effect θ is $\hat{\theta} = median\{\frac{D_i + D_j}{2}, i \leq j = 1, ..., n\}$
- ▶ Then, $O^1 \leq \ldots \leq O^M$ are the ordered values of the average differences with $M = \frac{n(n+1)}{2}$

Dependent samples Independent samples

CI for Wilcoxon sign rank test: Procedure

► Obtain upper (α/2)th percentile point w_{α/2} of the null distribution of W⁺

•
$$C_{\alpha} = \frac{n(n+1)}{2} + 1 - w_{\alpha/2}$$

• CI for two-sided test of H_0 : $\theta = 0$ (zero location shift):

•
$$\theta_{lb} = O^{C_{\alpha}}$$

• $\theta_{ub} = O^{M+1-C_{\alpha}}$

Dependent samples Independent samples

Independent samples

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Comparing success probabilities: Fisher' exact test

Dependent samples Independent samples

Fisher's exact test: Basics

► Say we observe the outcomes O_{.1} (O_{.2}) of n₁ (n₂) independent repeated Bernoulli trials with real success probability p₁ (p₂) in a sample from population 1 (2)

	Successes	Failures	Totals
Sample 1	O_{11}	<i>O</i> ₁₂	<i>n</i> ₁ .
Sample 2	<i>O</i> ₂₁	<i>O</i> ₂₂	<i>n</i> ₂ .
Totals	n.1	<i>n</i> .2	п

- Assumption
 - ▶ trials from sample 1 are independent of those from sample 2

•
$$H_0: p_1 = p_2 = p$$

Dependent samples Independent samples

Fisher's exact test: Procedure

- $Prob(O_{11} = x | n_1., n_2., n_{.1}, n_{.2}) = \frac{n_{.1}! n_{.2}! n_{1.!}! n_{1.!}!}{n! x! O_{12}! O_{21}! O_{22}!}$
- Fisher's exact test rejects H₀ : p₁ = p₂ if O₁₁ ≥ q_α where q_α is chosen from the conditional distribution described above so that Prob(O₁₁ = x|n₁., n₂., n_{1·1}, n_{·2}) = α where α is our desired level of significance

Dependent samples Independent samples

Fisher's exact test: Example

- $H_0: p_1 > p_2$
- What are the probabilities of the tables that would give us a value as larger as or larger than the observed value of O₁₁ = 5?

Dependent samples Independent samples

Fisher's exact test: Example

3	6	4	5	5	4	6	3	7	2	8	1	9	0
6	0	5	1	4	2	3	3	2	4	1	5	0	6
.0	17	.1	51	.3	78	.3	36	.1(30	.0.	11	.(000

•
$$H_0: p_1 < p_2$$

What are the probabilities of the tables that would give us a value as small as or small than the observed value of O₁₁ = 5?
 − it is .017 + .151 + .378 = .546

Dependent samples Independent samples

Fisher's exact test: Small sample issues

- ► Appropriate when expected frequency in any of the cells is below 5 otherwise χ²-test
- ► Also small sample test of independence

Dependent samples Independent samples

Fisher's exact test: Example

Dependent samples Independent samples

Median test

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Median test: Basics

- Assumptions:
 - ▶ observations X¹₁,...,X¹_n (X¹₂,...,X²_m) from population 1 (2) are random samples and iid
 - independence between the two samples
- ► Hypothesis: medians of the two populations are the same

Dependent samples Independent samples

Median test: Procedure

- ► Take grand median of combined sample of N = n + m observations
- Classify each observation as below or above the grand median, drop those equal to the median
- ► Fill 2x2 contingency table
- Perform Fisher's exact test
- Easily extendable to k samples

Dependent samples Independent samples

Median test: Example

	cat == 0	cat == 1	
Below grand median	5	2	7
Above grand median	3	4	7
	8	6	14

Dependent samples Independent samples

Median test: Example

. median var, by(cat) exact medianties (drop)

Median test

Greater than the	 ca	t	
median	0	1	Total
no	I 5	2	7
yes	3	4	7
Total	8	6	14
P	earson chi2(1 Fisher's exac) = 1.1667 t =	Pr = 0.280 0.592
1-sided	Fisher's exac	t =	0.296
Continui	ty corrected:		
P	earson chi2(1) = 0.2917	Pr = 0.589

Dependent samples Independent samples

Median test: Small sample issues

- Valid only for interval and ordinal data
- ► With skewed distributions, median is a robust statistic!
- Measures how many observations are below/above median in group and not by how much do observations differ – less powerful test than parametric alternative

Dependent samples Independent samples

Alternative parametric t-test

Dangerous beast if hunting for low p-values in this case

. ttest var, by(cat)

Two-sample t test with equal variances

Group	l Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	9 6	6.777778 10.5	1.769948 1.979057	5.309844 4.84768	2.69627 5.412672	10.85929 15.58733
combined	15	8.266667	1.367886	5.297798	5.332844	11.20049
diff	I	-3.722222	2.707443		-9.571297	2.126853
diff = Ho: diff =	= mean(0) = 0	- mean(1)		degrees	t of freedom	= -1.3748 = 13
Ha: d: Pr(T < t)	iff < 0) = 0.0962	Pr(Ha: diff != T > t) =	0 0.1924	Ha: d Pr(T > t	iff > 0) = 0.9038

Disregard? – skewed distribution, unknown variance

Dependent samples Independent samples

Mann-Whitney/Wilcoxon

Sign test (Fisher)

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Mann-Whitney/Wilcoxon: Basics

- Basic hypothesis, no treatment effect or sample from one population
- ► If treatment effect positive, values from one sample tend to be larger than values from other sample → ranks of values in one sample larger than in the other
- Mann Whitney U / Wilcoxon W statistic provide base for similar test

Mann-Whitney/Wilcoxon: Basics

- Assumptions:
 - ▶ observations X₁¹,...,X_n¹ (X₂¹,...,X_m²) from population 1 (2) are random samples and iid
 - independence between the two samples
 - continous outcome variable
- ► Hypothesis: H₀: F(x) = G(x) ∀x where F (G) is the distribution function corresponding to population 1 (2) comparison of distributions!
- ► Alternatively: H₀: E(X¹) E(X²) = 0 test of shift in location only when underlying distribution of similar shape check out Fligner-Policello

Mann-Whitney/Wilcoxon: Procedure

- ► Order combined sample of N = n + m observations from smallest to largest
- Let S₁² denote the rank of X₁²,..., S_m denote the rank of X_m² in the joint ordering
- Assign ties average rank
- Sum of ranks assigned to X^2 -values is $W = \sum_j = 1^N S_j$
- ► Two-sided test: Reject H_0 if $W \ge w_{\alpha/2}$
- Get distribution of W from table generated from all combinations of rank-orderings
- ► Mann Whitney U:
 - ► For each pair of X¹_i and X²_j observe which is smaller and score one for that pair if X_i is smaller
 - Sum of scores is U
 - Without ties, W = U + n(n+1)/2

Mann-Whitney/Wilcoxon: Example

- Consider the variable var in the fakeData.dta
- We ask, is there a difference in distribution of var across the groups defined by cat – between-subject treatment effect

. ranksum var, by(cat)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

cat	l obs	rank sum	expected				
0	9	59.5	72				
	1 0 +		4c				
combined	l 15	120	120				
unadjusted variance 72.00 adjustment for ties -0.51							
adjusted varia		71.49					
Ho: var(cat==0) = var(cat==1) z = -1.478 Prob > z = 0.1393							

Dependent samples Independent samples

Mann-Whitney/Wilcoxon: Example

 Is normal approximation appropriate let's look at exact probabilities

. ranksumex var, by(cat)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

cat	obs	rank sum	expected
0	9	59.5	72
1	6	60.5	48
combined	15	120	120
Exact statist: Ho: var(cat==	ics)) = var(ca	t==1)	
Prob <=	35.5 =	0.0769	
1100 /-	00.5 -	0.0111	

Two-sided p-value = 0.1540

Note: exact distribution too conservative with many ties.

Dependent samples Independent samples

Mann-Whitney/Wilcoxon: Example

And we do have many ties

++						
l	rank	var	cat			
1.	1	1	0			
2.	2.5	2	0			
3.	2.5	2	0			
4.	4.5	3	1			
5.	4.5	3	0			
6.	6	5	0			
7.	7	6	1			
8.	8	9	0			
9.	9	11	0			
10.	10	12	1			
11.	11.5	13	1			
12.	11.5	13	0			
13.	13	14	1			
14.	14.5	15	1			
15.	14.5	15	0			
-	+		+			

Dependent samples Independent samples

Mann-Whitney/Wilcoxon: Small sample issues

- Valid for any distribution of the sample exact test only valid if few or no ties between the groups!
- Much less sensitive to outliers than two-sample t-test
- Wilcoxon only little less likely to detect location shift than t-test
- ► For joint sample sizes larger than 20, use normal approximation
- rank sum test only a test of equality in medians/means if distributions are of same shape but differ in location
- ▶ works for interval or ordinal data but pay attention to ties

Dependent samples Independent samples

Alternative parametric t-test

- Again, it's a dangerous beast if hunting for low p-values in this case
- . ttest var, by(cat)

```
Two-sample t test with equal variances
 Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
  0 9 6.777778 1.769948 5.309844 2.69627 10.85929
   1 1
      6 10.5 1.979057 4.84768 5.412672 15.58733
_____+____
combined | 15 8.266667 1.367886 5.297798 5.332844 11.20049
_____
  diff |
     -3.722222 2.707443
                             -9.571297 2.126853
              _____
  diff = mean(0) - mean(1)
                                   t = -1.3748
Ho: diff = 0
                          degrees of freedom = 13
  Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0962 Pr(|T| > |t|) = 0.1924 Pr(T > t) = 0.9038
```

Disregard? – skewed distribution, unknown variance

Dependent samples Independent samples

Kolmogorov-Smirnov

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Kolmogorov-Smirnov: Basics

- Test of equality of distributions, not a directional test
- Assumptions:
 - ▶ observations X¹₁,...,X¹_n (X¹₂,...,X²_m) from population 1 (2) are random samples and iid
 - independence between the two samples
 - continous outcome variables
- ► Test of H₀: F(x) = G(x) ∀ x vs H_A: F(x) ≠ G(x) for at least one x
- Transfers values of observations into a step function, makes it a distribution-free test

Kolmogorov-Smirnov: Procedure

- For the two samples X_1 and X_2 order the combined N = n + m values denoted Z_1, \ldots, Z_N
- obtain the empirical distribution functions

► For every
$$i = 1, ..., N$$
, let

$$F(Z_i) = \frac{\# \text{ of sample } X_{1s} \leq Z_i}{m}$$

$$G(Z_i) = \frac{\# \text{ of sample } X_{1s} \leq Z_i}{n}$$

- ► This is the fraction of sample observations less than or equal to the value behind Z_i
- ► Then, $J = \frac{mn}{d} \max_{i=1,...,N} \{F(Z_i) G(Z_i)\}$ is the test statistic where *d* is the greatest common divisor of *m* and *n*
- Reject H_0 if $J \ge j_\alpha$

Dependent samples Independent samples

Kolmogorov-Smirnov: Example

Empirical distribution function

Adjusted, largest distance between empirical distribution functions is USLL SMALL CAMPLE ANALYSIS 66/95

Dependent samples Independent samples

Kolmogorov-Smirnov: Example

	+-									-
	1	var	F	G	D_FG	maxD_FG	М	N	J	ļ
	1-									L
1.		1	.1111111	0	.1111111	.4444444	9	6	8	I
2.		2	.3333333	0	.3333333	.4444444	9	6	8	L
з.	I.	2	.3333333	0	.3333333	.4444444	9	6	8	L
4.	I.	3	.4444444	.1666667	.2777778	.4444444	9	6	8	L
5.	L	3	.4444444	.1666667	.2777778	.4444444	9	6	8	L
	1-									L
6.	i.	5	.5555556	.1666667	.3888889	.4444444	9	6	8	i.
7.		6	.5555556	.3333333	.2222222	.4444444	9	6	8	L
8.	I.	9	.6666667	.3333333	.3333333	.4444444	9	6	8	L
9.	L	11	.7777778	.3333333	.4444444	.4444444	9	6	8	L
10.	I.	12	.7777778	.5	.2777778	.4444444	9	6	8	L
	1-									L
11.	L	13	.8888889	.6666667	.2222222	.4444444	9	6	8	L
12.		13	.8888889	.6666667	.2222222	.4444444	9	6	8	L
13.	I.	14	.8888889	.8333333	.0555556	.4444444	9	6	8	L
14.	1	15	1	1	0	.4444444	9	6	8	Ľ
15.	Ì.	15	1	1	0	.4444444	9	6	8	İ.
	÷.,									÷

- We cannot reject H_0 at standard levels of significance
- ► Ties! For exact probabilities, each step should have been 1/15 = .067

Dependent samples Independent samples

Kolmogorov-Smirnov: Example

		~ *
31	.0559	55
35	.0280	56
36	.0140	63
40	.0060	64
45	.0010	-
m	= 6, n = 9	-
	$P_{a}\{I \ge r\}$	<u>x</u>
	10(3 = x)	5
10	.1758	6
11	.0947	7
12	.0611	8
13	.0280	-
14	.0140	
15	.0060	r
16	.0028	-
18	.0004	10
		-
m	= 7, n = 9	_
x	$P_0\{J \ge x\}$	x
35	.1267	1
36	.0979	
38	.0787	1

Source: Hollander/Wolfe (1999), p.608

DUELL: SMALL SAMPLE ANALYSIS

Kolmogorov-Smirnov: Small sample issues

- Ties require adjustment to how exact p-values are computed. Could derive the conditional null distribution by considering the (^N_{# of ties}) possible ways how our observations could be assigned – not implemented in R, Stata
- Exact values appropriate, Smirnovs (1933) approximations not good for samples smaller than 50
- Do not do the one-sample test for normality with Kolmogorov-Smirnov – even best (also non-parametric) alternative, Shapiro-Wilk test, has not enough power to reject normality

Dependent samples Independent samples

Kruskal-Wallis

DUELL: SMALL SAMPLE ANALYSIS

Dependent samples Independent samples

Kruskal-Wallis: Basics

- Test of the location of k populations
- Parametric alternative is the one-way ANOVA builds on a measure of group differences but in ranks
- ► Extension of the Mann-Whitney U to more than two groups
- Population may be defined by confounding variables moving into multi-variate analysis

Dependent samples Independent samples

Kruskal-Wallis: Basics

- Assumptions:
 - ▶ observations X₁¹,...,X_n¹ (X₂¹,...,X_m²) from population 1 (2) are random samples and iid
 - independence between the two samples
 - continous outcome variables
 - distribution of outcome variable has similar shape across groups
- ► Under these assumptions and H₀ the vector of ranks has a uniform distribution over the set of all N! permutations of the vectors of integers (1, 2, ..., N)
- ► H₀: θ₁ = ... = θ_k− Kruskal-Wallis tests against H_a of at least two treatment effects are not equal
- Applicable to ordinal and continuous scales
Dependent samples Independent samples

Kruskal-Wallis: Procedure

- ► Combine N observations from k samples and rank all X
- Let r_{ij} be the rank of observation X_{ij} then

$$R_j = \sum\limits_{i=1}^{n} n_j$$
 and $R_{\cdot j} = rac{R_j}{n_j}$ for treatment j

► Then,

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} n_j \left(R_{j} - \frac{N+1}{2} \right)^2$$

where n_j is the number of observations in treatment j – add appropriate correction of ties

- ► H is a constant × a weighted sum of squared differences between the observed average rank and the expected value under the null within a group
- Reject H_0 if $H \ge h_{\alpha}$

Dependent samples Independent samples

Kruskal-Wallis: Example

	+-			+	
	Т	cat3	var	rank	
	÷				
1.	Т	3	1	1	
2.	Т	2	2	2.5	
з.	Т	3	2	2.5	
4.	I.	1	3	4.5	
5.	Т	1	3	4.5	
	÷				
6.	Т	1	5	6	
7.	Т	2	6	7	
8.	Т	2	9	8	
9.	Т	2	11	9	
10.	Т	2	12	10	
	÷				
11.	Т	3	13	11.5	
12.	Т	3	13	11.5	
13.	Т	2	14	13	
14.	Т	1	15	14.5	
15.	Т	3	15	14.5	
	+-			+	

Dependent samples Independent samples

Kruskal-Wallis: Example

. kwallis var, by(cat3);

Kruskal-Wallis equality-of-populations rank test

	+						+																				
	cat3	(Obs	R	lank	: Sur	n I																				
	 1	-+		+		9 50	1																				
	2	i.	6	i i	4	9.50																					
	3	1	5	I.	4	1.00																					
-	+						+																				
ch: pro	i-squa babil:	red ity	=		0.1	.07 t 1480	vit	n 2	d.f																		
ch: pro	i-squan babil:	red ity	wit =	h t	ies 0.9	= 476		0.	108	witl	n 2	d.	f.														
		,		1	2		(^	~	_ / .			-12	, .	~ (~	-	1	_	~	2		- /	1	/	_	_	'

►
$$H = \frac{12}{15(16)} 4(29.5/4 - 8)^2 + 6(49.5/6 - 8)^2 + 5(41/5 - 8)^2 = .106875$$

Dependent samples Independent samples

Kruskal-Wallis: Example

```
. set seed 010101;
. permute var h = r(chi2), reps(10000) nowarn nodots: kwallis var, by(cat3);
Monte Carlo permutation results
                                     Number of obs =
                                                         15
    command: kwallis var, by(cat3)
        h: r(chi2)
 permute var: var
т
             T(obs)
                    c n p=c/n SE(p) [95% Conf. Interval]
         _____
        h | .1068756 9551 10000 0.9551 0.0021 .9508566
                                                    .9590757
_____
Note: confidence interval is with respect to p=c/n.
Note: c = \#\{|T| \ge |T(obs)|\}
```

Dependent samples Independent samples

Kruskal-Wallis: Small sample issues

- ▶ When *n* grows larger, it the distribution of *H* approaches a χ^2 -distribution
- Adjustments for ties necessary
- Sample size need to allow able to derive permutation distribution
- ▶ Not a test of location unless distributions of k groups similar

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More \ tests} \end{array}$

Alternatives to correlation coefficients

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More \ tests} \end{array}$

Spearman

Spearman ρ Kendall's τ More tests

Spearman's ρ : Basics

- Pearsons correlation for variables converted to ranks
- Remember: $\rho X, Y = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$
- ► Spearman's *ρ* tells us something about the proportion of variability accounted for but computed from ranks
- Assumptions:
 - X and Y random sample and iid
 - ordinal or interval data
 - Monotonic relationship between the two variables
- H_0 : The variables do not have a rank-order relationship

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More \ tests} \end{array}$

Spearman's ρ : Example

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More \ tests} \end{array}$

Spearman's ρ : Example

Let's look at pairwise Pearson's correlations coefficients

	pwcorr 	var varX var	, sig varNon~n	varOut~r	varInd
	var	1.0000			
varNor	1Mon 	-0.0657 0.8161	1.0000		
varOut]	Lier 	0.4443 0.0971	-0.5894 0.0208	1.0000	
vai	Ind	-0.1208 0.6680	0.5183 0.0478	-0.1290 0.6467	1.0000

Spearman ρ Kendall's τ More tests

Spearman's ρ : Example

. spearman var varX, stats(rho p) var varNon n varOutr varInd ----+ _____ 1.0000 var | varNonMon -0.0820 1.0000 0.7713 varOutlier -0.2986 -0.5743 1.0000 0.2797 0.0251 varInd -0.1380 0.5251 -0.0771 1.0000 0.6238 0.0445 0.7849

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More \ tests} \end{array}$

Spearman's ρ : Small sample issues

- Relationship needs to be only monotonic not linear (or normal) as for Pearsons correlation coefficient
- Rather robust to outliers (thanks to ranks again)
- Are transformations an option to satisfy monotonicity? It is a rank measure, what transformations would that be?
- With N > 30, Pearson's r and Spearman's ρ are sufficiently equivalent − critical value with p = 0.05 for Pearson's with 28 df is .361, for Spearman's with N=30 is .363

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More \ tests} \end{array}$

Spearman's ρ : Small sample issues

- Report Spearman's ρ with a proper summary statistic of the data (e.g., median and IQR)
- Check for number of ties
- Don't use correlation coefficients for data with limit range (e.g. Likert scale)
- (Don't forget adjustments to p-value if testing multiple hypothesis)

 $\begin{array}{l} \text{Spearman } \rho \\ \text{Kendall's } \tau \\ \text{More tests} \end{array}$

Kendall's τ

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More \ tests} \end{array}$

Kendall's τ : Basics

▶ Define n as number of observations, any pair of ranks (x_i, y_i) and (x_j, y_j) of one variable pair as concordant if (x_i - x_j)(y_i - y_j) > 0 and discordant otherwise - where C(D) is number of concordant (discordant pairs),

•
$$\tau_a = \frac{C-D}{n(n-1)/2}$$

•
$$\tau_b = \frac{C-D}{\sqrt{n(n-1)/2-U}\sqrt{n(n-1)/2-V}}$$

with U and V being the sum of the number of tied values in all tied sets in variable X and Y, respectively

It's a probability: difference between the probability that two variables are in the same order in the observed data versus the probability that the two variables are in different orders

Spearman ρ Kendall's τ More tests

Kendall's τ : Example

ktau var varX, stats(rho obs p)

	var	varNon~n	varOut~r	varInd
var	0.9619 1.0000			
varNonMon	-0.0571 -0.0622 0.7996	0.8762 1.0000		
varOutlier	-0.4667 -0.4851 0.0165	-0.4000 -0.4357 0.0373	0.9619 1.0000	
varInd	-0.0857 -0.0874 0.6907	0.4000 0.4273 0.0382	-0.0667 -0.0680 0.7654	1.0000 1.0000

Spearman ρ Kendall's τ More tests

Kendall's τ : Small sample issues

- ▶ τ approaches a normal distribution more rapidly ($N \ge 10$)) than Spearman's ρ (Gilpin 1993), with continuos variables even for ($N \ge 8$), Kendall/Gibbons 1990)
- Said to be more accurate with smaller samples because less sensitive to discrepancies in data
- ► Give vastly different exact p-values for various sample sizes and data values: $-1 \le 3 * \tau 2\rho \le 1$ (Siegel/Castellan 1988)

 $\begin{array}{l} {\rm Spearman} \ \rho \\ {\rm Kendall's} \ \tau \\ {\rm More} \ {\rm tests} \end{array}$

More tests

Spearman ρ Kendall's τ More tests

More tests

- ► Goodman and Kruskal's gamma:
 - $\gamma = \frac{C-D}{C+D}$
 - Distribution of G has high variability and is skewed for small to moderate sample sizes, convergence to ideal distribution in the asymptotic case is slow (Gans/Robertson 1981)
- ► Somers' D:
 - Define T_{Y} as number of pairs with equal y but unequal x
 - $D_{YX} = \frac{C-D}{C+D+T_Y}$
 - ► improvement in predicting X attributed to knowing an observation's value Y
 - Note, ranksum and signrank both test $D_{YX} = 0$
 - ► Asymptotic approximations work when smaller of the two samples has N ≥ 8

References

Sign tests, rank sum tests

- Wilcoxon (1945): Individual comparisons by ranking methods. Biometrics Bulletin 1, pp. 80–83
- Sen (blog): Stata and R ranksum test p-values diff
- Harris and Hardin (2013): Exact Wilcoxon signed-rank and Wilcoxon Mann–Whitney ranksum tests, Stata Journal 13(2), pp.337-43
- Ronan Conroy (2012): What hypotheses do "nonparametric two-group tests actually test", Stata Journal 12(2), pp.182-90
- Bellera, Julien, and Hanley (2010): Normal Approximations to the Distributions of the Wilcoxon Statistics: Accurate to What N? Graphical Insights, Journal ofStatistics Education 18(2), pp. 1-17

Alternatives to correlation coefficients

- Gilpin (1993): Table for conversion of Kendall's Tau to Spearman's Rho within the context measures of magnitude of effect for meta-analysis, Educational and Psychological Measurement 53(1), pp. 87-92.
- ► Gans and Robertson (1981): Distributions of Goodman and Kruskal's Gamma and Spearman's *ρ* in 2 × 2 Tables for Small and Moderate Sample Sizes, Journal of the American Statistical Association 76(376), pp.942-6
- Cuzick (1985): A Wilcoxon-type test for trend, Statistics in Medicine 4(4), pp. 543-7
- Roger Newson's Stata packages website (including somersd)

Texts and further references

- Hollander, Wolfe, Chicken (2014): Nonparametric Statistical Methods, 3rd Edition
- NSM3: Functions and Datasets to Accompany Hollander, Wolfe, and Chicken - Nonparametric Statistical Methods, Third Edition
- Siegel and Castellan (1988): Nonparametric statistics for the behavioral sciences, McGraw-Hill
- Razali and Wah: Power comparisons of Shapiro-Wilk, Kolmogrov-Smirnov, Lilliefors and Anderson-Darling tests